Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кон. механика02-2-16.doc
Скачиваний:
249
Добавлен:
12.04.2015
Размер:
7.32 Mб
Скачать

6.3.Волновое уравнение

Оказывается, что уравнение любой волны является решением некоторого дифференциального уравнения второго порядка, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и времени от уравнения волны: .

Производные по х:

; . (6.14)

Производные по t:

; . (6.15)

Разделим обе части уравнения (6.15) на v2:

или . (6.16)

Сравнивая выражения (6.14) и (6.16), убеждаемся в равенстве их правых частей, поэтому можем приравнять левые части этих уравнений:

. (6.17)

Соотношение (6.17) является волновым уравнением плоской волны, распространяющейся вдоль оси X.

Волновое уравнение плоской волны, распространяющейся в трехмерном пространстве, имеет вид

. (6.17)

В математике вводят специальный оператор, называемый оператором Лапласа:

. (6.18)

С применением оператора Лапласа /лапласиана/ волновое уравнение (6.17) принимает вид

. (6.19)

Если при анализе какого-либо процесса, получают уравнение вида (6.19), то это означает, что рассматриваемый процесс - волна, распространяющаяся со скоростью v.

6.4. Интерференция волн. Стоячие волны

При одновременном распространении в среде нескольких волн частицы среды совершают колебание, являющееся результатом геометрического сложения колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны накладываются одна на другую, не изменяя друг друга. Это явление называют принципом суперпозиции волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают разностью фаз и имеют одинаковую частоту, волны называются когерентными. Когерентные волны излучаются когерентными источниками. Когерентными источниками называют точечные источники, размерами которых можно пренебречь, излучающие в пространство волны с постоянной разностью фаз. При сложении когерентных волн возникает явление интерференции.

Интерференция – это явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве. Возникает интерференционная картина, заключающаяся в том, что колебания в одних точках усиливают, а в других - ослабляют друг друга.

Наиболее часто интерференция возникает при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающая в результате такой интерференции волна называется стоячей. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и встречная - отраженная, складываясь, образуют стоячую волну.

Пусть вдоль оси X распространяются прямая и обратная плоские волны, уравнения которых имеют вид

; (6.20)

. (6.21)

В данном случае результирующее колебание получается путем алгебраического сложения:

. (6.22)

Воспользовавшись тригонометрическим тождеством

,

перепишем (6.22) в виде

. (6.23)

Выражение (6.23) - уравнение стоячей волны.

Амплитуда стоячей волны

. (6.24)

Из (6.24) видно, что амплитуда, зависящая от x, может достигать максимального и минимального значений.

Действительно:

1) при kx =  n (n = 0, 1, 2, ) амплитуда максимальна: A = 20. Точки, в которых амплитуда смещения удваивается, называются пучностями стоячей волны;

2) при kx =  (2n + 1) амплитуда обращается в нуль. Эти точки называются узлами стоячей волны.

Расстояние между соседними (узлам) – длина стоячей волны0. Длина стоячей волны

. (6.25)

Рис.6.2

Таким образом, длина стоячей волны равна половине длины бегущей волны.

Графически стоячая волна выглядит так, как показано на рис.6.2.

В соседних полуволнах колебания частиц имеют противоположную фазу, или, как говорят, сдвиг по фазе составляет . В отличие от бегущей волны в пределах одной полуволны колебания всех точек происходят в одной и той же фазе, но с различной амплитудой.

Очень часто стоячие волны используют для определения скорости распространения волн. Это достигается с помощью так называемого интерферометра.

Рис.6.3

В звуковом интерферометре источником звука (источником волны) является мембрана или пьезоэлектрическая пластинка - 1 (рис.6.3). Имеется отражатель (рефлектор) - 2. Перемещая рефлектор, получают систему стоячих звуковых волн. Если при перемещении рефлектора на расстояние L возникло n узлов, то скорость распространения звука будет равна

. (6.26)

То есть для определения скорости распространения волны (звуковой волны) необходимо измерить длину стоячей волны 0 и частоту звуковых колебаний.