Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Сборник тестовых задач ч.1. В.М. Полуни....doc
Скачиваний:
170
Добавлен:
07.11.2018
Размер:
7.37 Mб
Скачать

П 1.2. Волновые процессы. Акустика

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию – процесс распространения колебаний в пространстве.

Фронт волны (волновой фронт) – геометрическое место точек, до которых доходят волны за некоторый промежуток времени t.

Волновая поверхность – геометрическое место точек, колеблющихся в одинаковой фазе.

Основное свойство волн, независимо от их природы, – перенос энергии без переноса вещества в пространстве.

Длина волны – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе (расстояние, на которое распространяется волна за один период):

; ,

где  – длина волны;

T – период;

 – частота;

v – скорость распространения волны.

Волновой вектор k определяет направление волны. Направление волнового вектора совпадает с направлением вектора скорости:

,

где  – круговая частота.

Волновое число – численное значение волнового вектора:

.

Групповая скорость – скорость перемещения в пространстве амплитуды волны:

.

Упругие (или механические) волны – механические возмущения, возникающие и распространяющиеся в упругой среде. Различают продольные и поперечные волны.

Продольные волныволны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.

В жидкостях и газах возникают и распространяются только продольные волны («волны сжатия»).

В твердых телах возникают и распространяются не только продольные, но и поперечные волны («волны сдвига»).

Фазовая скорость упругих волн:

продольных, поперечных,

где E – модуль Юнга;

G – модуль сдвига.

Одиночная волна (импульс) – сравнительно короткое возмущение, не имеющее регулярного характера.

Волновой пакет – совокупность волн, частоты которых мало отличаются друг от друга.

Гармоническая волна – бесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса.

Плоские волны – такие, волновые поверхности которых представляют собой систему параллельных друг другу плоскостей, перпендикулярных направлению распространения волны.

Сферические волны – такие, волновые поверхности которых представляют собой систему концентрических сферических поверхностей.

Принцип суперпозиции волн – результат геометрического сложения когерентных волн.

Когерентные волны – обладающие в каждой из точек среды постоянной разностью фаз и имеющие одинаковую частоту.

Когерентные источники – точечные источники, размерами которых можно пренебречь, излучающие в пространство когерентные волны.

Интерференция волн – явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве.

Стоячая волна – волна, возникающая при интерференции двух встречных (падающей и отраженной) плоских волн с одинаковой амплитудой.

Уравнение стоячей волны:

,

где – амплитуда стоячей волны.

Условие максимального значения амплитуды стоячей волны:

,

где n=0, 1, 2, 3;

Условие минимального значения амплитуды стоячей волны:

,

где n=0, 1, 2, 3;

Пучности стоячей волны – точки, в которых амплитуда удваивается.

Узлы стоячей волны – точки, в которых амплитуда обращается в нуль.

Длина стоячей волны – расстояние между соседними узлам 0:

.

Скорость распространения стоячей волны:

,

где L – некоторое расстояние, на котором наблюдается стоячая волна;

n – число узлов;

 – частота колебаний.

Бегущие волны – волны, которые переносят в пространстве энергию.

Уравнение плоской прямой бегущей волны, распространяющейся со скоростью v в направлении x – выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени:

,

где  – смещение от положения равновесия точки, находящейся на расстоянии x от источника гармонических колебаний;

0 – амплитуда колебаний;

 – циклическая частота колебаний;

0 – начальная фаза колебаний.

Уравнение плоской обратной бегущей волны:

.

Связь между разностью фаз двух точек бегущей волны и разностью хода (x2 – x1), т.е. разностью расстояний этих точек от источника колебаний:

.

Волновое уравнение плоской волны, распространяющейся вдоль оси X, дифференциальное уравнение второго порядка в частных производных:

.

Волновое уравнение плоской волны, распространяющейся в трехмерном пространстве:

,

где – оператор (лапласиан).

Скорость звука в газах

,

где p – давление газа, не возмущенного волной;

 – плотность газа, не возмущенного волной;

– отношение молярной теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Амплитуда звукового давления p0 и амплитуда скорости v0 частиц в звуковой волне связаны соотношением

.

Интенсивность звука I, выраженная через амплитуду звукового давления – энергия, переносимая звуковой волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны:

,

где  – плотность газа.

Уровень интенсивности звука (в децибелах) – определяется формулой

,

где I – интенсивность данного звука;

I0=10-12 Вт/м2 – интенсивность звука на пороге слышимости при стандартной частоте =1 кГц.

Уровень громкости звука (в фонах) – вычисляется по формуле

,

где IN – интенсивность звука стандартной частоты =1 кГц, равногромкого с исследуемым звуком.

Явление Доплера – если источник и приемник звука перемещаются относительно среды, в которой распространяется звук, то частота звуковых колебаний ', регистрируемая приемником звука, связана с частотой собственных колебаний  источника соотношением

,

где c, u, v – скорости соответственно звука, его источника и приемника.

Примечание. Записанная формула относится к случаю, если источник и приемник звука движутся по одной прямой. При этом величины u, v – алгебраические: u>0, если источник движется к приемнику; u<0, если источник удаляется от приемника. Аналогично, v>0, если приемник приближается к источнику; v<0, если приемник движется от источника.

Вектор плотности потока энергии волны – физическая величина, модуль которой равен энергии W, переносимой волной за единицу времени (t=1) через единичную площадку, расположенную перпендикулярно направлению распространения волны (S):

; =uv; J=uv,

где u – плотность энергии в каждой точке среды, среднее значение которой вычисляется по формуле ;

ρ – плотность среды;

0 – амплитуда волны;

 – круговая (циклическая частота);

v – фазовая скорость (скорость перемещения фазы волны).