Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Сборник тестовых задач ч.1. В.М. Полуни....doc
Скачиваний:
170
Добавлен:
07.11.2018
Размер:
7.37 Mб
Скачать

П 2.4. Основы термодинамики

Первое начало термодинамики это закон сохранения и превращения энергии, которым сопровождаются термодинамические процессы. Оно утверждает: "Изменение внутренней энергии системы при переходе из одного состояния в другое равно сумме механических эквивалентов всех внешних воздействий".

Математически первое начало термодинамики можно записать так:

dU=Q-A+M,

где dU – изменение внутренней энергии системы;

Q – элементарное количество тепла, подводимого к системе;

A – элементарная работа, совершаемая системой;

M – другие виды элементарных энергий.

Если M=0, то

dU=Q-A или Q=dU+A.

Изотермический процесс – процесс, протекающий при постоянной температуре (T=const).

Первое начало термодинамики для изотермического процесса. Т.к. dU=CVdT=0, то U=const, а

Q=dU+A=A,

т.е. все подводимое к системе тепло идет на совершение этой системой работы.

Работа, совершаемая идеальным газом при изотермическом процессе:

а) для моля или киломоля идеального газа:

или

;

б) для произвольной массы газа:

или

;

Изобарический процесс – процесс, протекающий при постоянном давлении (p=const).

Первое начало термодинамики для изобарического процесса:

Qp=dU+A,

т.е. подводимое к системе тепло идет как на изменение ее внутренней энергии, так и на совершение этой системой работы. При этом

а) для моля или киломоля идеального газа

Qp=CpdT, dU=CVdT, A=pdV=RdT;

б) для произвольной массы газа:

Qp=mCpdT/μ, dU=mCVdT/μ, A=mpdV/μ=mRdT/μ;

Доля подводимой к системе энергии, которая идет на совершение работы:

A=R/CpQp=(1-1/)Qp=Qp(-1)/.

Доля подводимой к системе энергии, которая идет на изменение внутренней энергии системы:

а) для моля или киломоля идеального газа:

dU=CVdT=Qp CV/Cp=Qp/;

б) для произвольной массы газа:

dU=mCVdT/μ=mQpCV/μCp=mQp/μ;

где =Cp/CV.

Изохорический процесс – процесс, протекающий при постоянном объеме (V=const).

Первое начало термодинамики для изохорического процесса:

Т.к. A=pdV=0, то

QV=dU+A=dU,

т.е. при изохорическом процессе, все подводимое к системе тепло идет на изменение ее внутренней энергии. При этом

QV=CVdT,

следовательно,

dU=CVdT, или U=CvT.

Изменение внутренней энергии системы пропорционально изменению ее температуры.

Адиабатические или адиабатные процессы – процессы, протекающие без теплообмена или почти без теплообмена с окружающей средой. Примером адиабатического процесса может служить быстро протекающий процесс сжатия или расширения газа.

Первое начало термодинамики для адиабатического процесса: т.к. Q=0, то

dU+A=0, a A=-dU,

т.е. работа, совершаемая системой при адиабатическом процессе, сопровождается уменьшением ее внутренней энергии.

Связь между параметрами состояния системы при адиатическом процессе (уравнения Пуассона):

Работа, совершаемая произвольной массой m идеального газа при адиабатическом расширении:

Политропическим называют процесс, при котором p и V связаны соотношениями:

где n - показатель политропы, принимающий любые значения от - до +.

Работа, совершаемая идеальным газом при политропическом процессе,

Обратимый процесс, это процесс, который протекает так, что после его окончания систему можно вернуть в первоначальное состояние, причем ни каких изменений в окружающей систему среде не произойдет.

Необратимый процесс, это процесс, протекающий так, что после его окончания систему нельзя вернуть в первоначальное состояние без изменений в окружающей среде.

Круговой процесс (цикл), это такая последовательность превращений, в результате которой система, выйдя из какого-либо исходного состояния, возвращается в него вновь.

Любой круговой процесс состоит из процессов расширения и сжатия. Процесс расширения сопровождается работой, совершаемой системой, а процесс сжатия – работой, совершаемой над системой внешними силами. Разность этих работ равна работе данного цикла.

Если работа при расширении больше, чем работа при сжатии, то такой процесс (цикл) называется прямым. В противном случае – обратным.

Коэффициент полезного действия при куруговых процессах (характеристика эффективности цикла)физическая величина, равная отношению работы цикла к работе, которую можно было бы совершить при превращении в нее всего количества тепла, подведенного к системе:

Цикл Карно – состоит из двух изотермических и двух адиабатических процессов.

Коэффициент полезного действия цикла Карно (КПД):

КПД цикла Карно не зависит от природы вещества, а зависит лишь от температур, при которых теплота, сообщается системе и отбирается от нее.

Коэффициент полезного действия холодильной машины (холодильника)

Примечание. Кроме цикла Карно в технической термодинамике применяются цикл Отто, состоящий из двух адиабатических и двух изохорических процессов, и цикл Дизеля, состоящий из двух адиабатических, изохорического и изобарического процессов.

Энтропия – физическая величина, элементарное изменение которой при переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру, при которой произошел этот процесс:

.

Связь энтропии системы с термодинамической вероятностью (соотношение Больцмана):

S=klnw,

где k – постоянная Больцмана.

Изменение энтропии системы при переходе из одного состояния в другое

или

.

Изменение энтропии системы при изотермическом процессе

.

Изменение энтропии системы при изобарическом процессе

.

Изменение энтропии системы при изохорическом процессе

.

Изменение энтропии системы при адиабатическом процессе

S=0, .

Изменение энтропии системы, совершающей цикл Карно

,

где Sр – изменение энтропии рабочего тела;

Sн, Sх – изменение энтропии нагревателя и холодильника;

Sпр – изменение энтропии «потребителя работы».

В случае совершения системой обратимого цикла Карно, энтропия замкнутой системы не изменяется:

Sобр=0 или Sобр=const.

В случае совершения системой необратимого цикла Карно, энтропия замкнутой системы возрастает

S0; ; .

Для произвольных процессов, происходящих в замкнутой системе, энтропия системы для любых, происходящих в ней процессах, не может убывать:

S0 или ,

где знак «равенства» справедлив для обратимых процессов, а знак «неравенства» – для необратимых.

Второе начало термодинамики: «В изолированной системе возможны только такие процессы, при которых энтропия системы возрастает или невозможен процесс, единственным результатом которого является превращение в работу теплоты, полученной от нагревателя»:

.

Термодинамические потенциалы – определенные функции объема V, давления p, температуры T, энтропии S, числа частиц системы N и других макроскопических параметров x, характеризующих состояние термодинамической системы:

а) внутренняя энергия – энергия системы, зависящая от ее внутреннего состояния. Она является однозначной функцией независимых переменных, определяющих это состояние, например температуры T и объема V (или давления p):

U=U(S,V,N,x).

Изменение внутренней энергии системы U определяется лишь ее значениями в начальном и конечном состояниях:

.

б) энтальпия (теплосодержание) характеризует состояние макроскопической системы в термодинамическом равновесии при выборе в качестве основных независимых переменных энтропии S и давления p:

H=H(S,p,N,x).

Энтальпия системы равна сумме энтальпий составляющих ее частей.

Связь энтальпии с внутренней энергией U системы:

,

где V – объем системы.

Полный дифференциал энтальпии (при неизменных N и x) имеет вид

.

Связь энтальпии с температурой, объемом и теплоемкостью (при постоянном давлении) системы

; ; Cp=(dH/dt).

Изменение энтальпии (H) равно количеству теплоты, которое сообщают системе или отводят от нее при постоянном давлении, поэтому значения H характеризуют тепловые эффекты фазовых переходов (плавления, кипения и т. д.), химических реакций и других процессов, протекающих при постоянном давлении.

в) свободная энергия – одно из названий изохорно–изотермического термодинамического потенциала или Гельмгольца энергии. Представляет собой ту часть внутренней энергии системы, которая превращается во внешнюю работу при обратимых изотермических процессах F=F(V,T,N,x):

,

где TS – связанная энергия.

Связанная энергия – представляет собой ту часть внутренней энергии, которая не может быть передана в виде работы при изотермическом процессе:

TS=U-F.

Изменение (уменьшение) свободной энергии при необратимых изотермических процессах определяет наибольшую величину работы, которую может совершить система:

; .

г) энергия Гиббса - изобарно-изотермический потенциал, свободная энтальпия, характеристическая функция термодинамической системы при независимых параметрах p, T и N – G. В изотермически равновесном процессе, при постоянном давлении, убыль энергии Гиббса системы равна полной работе системы за вычетом работы против внешнего давления (т.е. равна максимальному значению "полезной" работы):

G=G(p,T,N,x); .

Связь энергии Гиббса со свободной энергией:

.

д) химический потенциал - физическая величина, равная энергии Гиббса отдельно взятой частицы.

Третье начало термодинамики (теорема Нернста): «Изменение энтропии системы (S) при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю, стремится к нулю. При помощи последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю»:

.

Термодинамика неравновесных процессов – общая теория макроскопического описания неравновесных процессов. Основная задача термодинамики неравновесных процессов - количественное изучение этих процессов для состояний, не сильно отличающихся от равновесного состояния.

Закон сохранения массы

,

где  – плотность многокомпонентной системы;

v – гидродинамическая скорость среды (средняя скорость переноса массы), зависящая от координат и времени;

v – поток массы.

Закон сохранения массы для концентрации какого–либо компонента :

,

где ck – концентрация компонента;

k – плотность компонента;

 – плотность среды;

Jk=k(vk-v) – диффузионный поток;

vk – гидродинамическая скорость (средняя скорость переноса массы) компонента.

Закон сохранения импульса: изменение импульса элементарного объема может происходить за счет сил, вызванных градиентом внутренних напряжений в среде P,, и внешних сил Fk.

Закон сохранения энергии представляет собой первое начало термодинамики в термодинамике неравновесных процессов.

Уравнение баланса энтропии: «В термодинамике неравновесных процессов принимается, что энтропия элементарного объема является такой же функцией от внутренней энергии, удельного объема и концентрации, как и в состоянии полного равновесия»:

,

где  – скорость возрастания энтропии;

 – плотность вещества;

s – энтропия элементарного объема (локальная энтропия);

Js – плотность потока энтропии.