Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпоры.docx
Скачиваний:
24
Добавлен:
15.04.2019
Размер:
4.95 Mб
Скачать

Ламинарный и турбулентный режим течения жидкости

Имеют место два различных по своему характеру режима движения жидкости: ламинарный и турбулентный.

При ламинарном режиме жидкость движется слоями без поперечного перемешивания, причем пульсации скорости и давления отсутствуют.

При турбулентном режиме слоистость нарушается, движение жидкости сопровождается перемешиванием и пульсациями скорости и давления.

Критерием для определения режима движения является безразмерное число Рейнольдса. Для труб круглого сечения число Рейнольдса определяется по формуле:

Re = υ·d/ν;

- для потоков произвольного поперечного сечения

Re = υ·Rг /ν;

или

Re = υ·Dг /ν;

где υ — средняя скорость жидкости; d — диаметр трубы; Rг — гидравлический радиус; Dг — гидравлический диаметр; ν — кинематический коэффициент вязкости жидкости.

Режим будет ламинарным, если

Re < Reкр;

ReR < ReRкр,

 

и турбулентным, если

Re > Reкр;

ReR > ReRкр,

В выражениях приведенных выше Reкр и ReRкр — критические числа Рейнольдса, для круглых труб обычно принимаемые равными соответственно 2320 и 580. В таблице приведены ориентировочные значения Reкр для некруглых каналов и некоторых гидроагрегатов, при этом число Рейнольдса определено по формуле

Re = υ·Dг /ν.

Для изогнутых каналов (витков), вращающихся вокруг внешней оси 0—0 (следующий рисунок), согласно исследованиям Ю. В. Квитковского и К. И. Толчеева, критическое число Рейнольдса получается несколько большим, чем для прямых труб. Единица вязкости - паскаль-секунда (Па•с): 1 Па•с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м2 поверхности касания слоев (1 Па•с= 1 Н•с/м2). Чем больше вязкость, тем сильнее жидкость отличается от идеальной, силы внутреннего трения становятся большими. Вязкость зависит от температуры, характер этой зависимости для жидкостей и газов отличается (у газов с увеличением температуры увеличивается, для жидкостей, наоборот, уменьшается) что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18-40°С падает в четыре раза. Российский физик П. Л. Капица (1894-1984; Нобелевская премия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю. Характер течения зависит от безразмерной величины, называемой числом Рейнольдса (О. Рейнольдс (1842-1912) - английский ученый): где ν = η/ρ - кинематическая вязкость; ρ-плотность жидкости; <v>-средняя по сечению трубы скорость жидкости; d - характерный линейный размер, например диаметр трубы. При малых значениях числа Рейнольдса (Re≤1000) наблюдается ламинарное течение, область перехода от ламинарного течения к турбулентному происходит при 1000≤Re≤2000, а при Re=2300 (для гладких труб) течение - турбулентное. Если число Рейнольдса одинаково, то режим течения различных рассматриваемых жидкостей (газов) в трубах разных сечений одинаков.

27

Траектория материальной точки

Траекто́рия материа́льной то́чки  —F"линия в трёхмерном "пространстве, представляющая собой %BE"множество точек, в которых находилась, находится или будет находиться "материальная точка при своём перемещении в пространстве. Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения. Кроме того, и при наличии движущегося по ней объекта, траектория сама по себе не может ничего дать в отношении причин движения, то есть о действующих силах.

Связь со скоростью и нормальным ускорением

Скорость материальной точки всегда направлена по касательной к дуге, используемой для описания траектории точки. При этом существует связь между величиной скорости v, "нормальным ускорением an и радиусом кривизны траектории ρ в данной точке:

Траектория свободной материальной точки

В соответствии с Первым законом Ньютона, иногда называемым "законом инерции должна существовать такая система, в которой свободное тело сохраняет (как вектор) свою скорость. Такая система отсчёта называется "инерциальной. Траекторией такого движения является F"прямая линия, а само движение называется равномерным и прямолинейным.

В соответствии с F"принципом относительности Галилея, существует бесконечное множество равноправных инерциальных систем, движение которых одна относительно другой не может быть установлено никаким образом путём наблюдения любых процессов и явлений, происходящих только в этих системах. Прямая траектория движения объекта в одной системе будет выглядеть также прямой в любой другой инерциальной системе.

Если же в некоторой системе отсчёта свободное тело двигается по криволинейной траектории и/или с переменной скоростью, то такая система является "неинерциальной.

Движение под действием внешних сил в неинерциальной системе отсчёта

Если система отсчёта неинерциальна (то есть движется с неким ускорением относительно инерциальной системы отсчёта), то в ней также возможно использование выражения (1), однако в левой части необходимо учесть так называемые "силы инерции (в том числе, "центробежную силу и "силу Кориолиса, связанные с вращением неинерциальной системы отсчёта).

Как пример, рассмотрим работника театра, передвигающегося в "колосниковом пространстве над сценой по отношению к зданию театра равномерно и прямолинейно и несущего над вращающейся сценой дырявое ведро с краской. Он будет оставлять на ней след от падающей краски в форме раскручивающейся спирали (если движется от центра вращения сцены) и закручивающейся — в противоположном случае. В это время его коллега, отвечающий за чистоту вращающейся сцены и на ней находящийся, будет поэтому вынужден нести под первым недырявое ведро, постоянно находясь под первым. И его движение по отношению к зданию также будет равномерным и прямолинейным, хотя по отношению к сцене, которая является неинерциальной системой, его движение будет искривлённым и неравномерным . Более того, для того, чтобы противодействовать сносу в направлении вращения, он должен мышечным усилием преодолевать действие "силы Кориолиса, которое не испытывает его верхний коллега над сценой, хотя траектории обоих в инерциальной системе здания театра будут представлять прямые линии.

Но можно себе представить, что задачей рассматривающихся здесь коллег является именно нанесение прямой линии на вращающейся сцене. В этом случае нижний должен потребовать от верхнего движения по кривой, являющейся зеркальным отражением следа от ранее пролитой краски. Следовательно, прямолинейное движение в неинерциальной системе отсчёта не будет являться таковым для наблюдателя в инерциальной системе.

Более того, равномерное движение тела в одной системе, может быть неравномерным в другой. Так, две капли краски, упавшие в разные моменты времени из дырявого ведра, как в собственной системе отсчёта, так и в системе неподвижного по отношению к зданию нижнего коллеги (на уже прекратившей вращение сцене), будут двигаться по прямой (к центру Земли). Различие будет заключаться в том, что для нижнего наблюдателя это движение будет ускоренным, а для верхнего его коллеги, если он, оступившись, будет падать, двигаясь вместе с любой из капель, расстояние между каплями будет увеличиваться пропорционально первой степени времени, то есть взаимное движение капель и их наблюдателя в его ускоренной системе координат будет равномерным со скоростью v, определяемой задержкой Δt между моментами падения капель:

v = gΔt.

Где g —F"ускорение свободного падения.

Поэтому форма траектории и скорость движения по ней тела, рассматриваемая в некоторой системе отсчёта, о которой заранее ничего не известно, не даёт однозначного представления о силах, действующих на тело. Решить вопрос о том, является ли эта система в достаточной степени инерциальной, можно лишь на основе анализа причин возникновения действующих сил.

Таким образом, в неинерциальной системе:

  • Кривизна траектории и/или непостоянство скорости являются недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело действуют внешние силы, которые в конечном случае могут быть объяснены гравитационными или электромагнитными полями.

  • Прямолинейность траектории является недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело не действуют никакие силы.

28

Сила инерции

Сила инерции (также инерционная сила) — термин, широко применяемый в различных значениях в "точных науках, а также в F"философии, F"истории, "публицистике и художественной литературе.

В точных науках сила инерции обычно представляет собой понятие, привлекаемое в целях удобства при рассмотрении движения материальных тел в "неинерциальной системе отсчётаHYPERLINK "http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B8". Частными случаями такой силы инерции являются "центробежная сила и "сила Кориолиса. Кроме того, силу инерции применяют для формальной возможности записывать уравнения %29"динамики как более простые уравнения %29"статики ("кинетостатика, основанная на "принципе HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF_%D0%94%E2%80%99%D0%90%D0%BB%D0%B0%D0%BC%D0%B1%D0%B5%D1%80%D0%B0"Д’Аламбера).

Вне контекста физики или математики термин «сила инерции» обычно означает некоторое свойство рассматриваемого явления, которое затрудняет изменения и, тем самым, обеспечивает поддержание status quo. В этом употреблении смысл термина зачастую никак не связан с физическим %29"перемещением (изменением положения в пространстве) и понятием %29"силыHYPERLINK "http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B8". За исключением этого параграфа, статья посвящена значениям термина «сила инерции» в точных науках.

Терминология

Русский термин произошёл от французского словосочетания %BA"фр. force d'inertie. В других языках название силы более явно указывает на её фиктивность: в немецком %BA"нем. Scheinkräfte («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском %BA"англ. pseudo force(«псевдо-сила») или %BA"англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила %BD"д’Аламбера» (%BA"англ. d’Alembert force) и «инерционная сила» (%BA"англ. inertial force).

Многообразие названий объясняется тем, что термин «сила инерции» применяется для описания трёх различных сил:

  • силы, которую удобно ввести при описании движения тела в неинерционной системе отсчёта («переносная сила инерции», «эйлерова сила инерции»);

  • силы-противодействия из "третьего закона Ньютона («ньютонова сила инерции»);

  • фиктивной силы, применяющейся в принципе Д’Аламбера («даламберова сила инерции»).

В результате многозначности термина «возникла путаница, которая продолжается и по сей день, и ведутся непрекращаюшиеся споры о том, реальны или нереальны (фиктивны) силы инерции и имеют ли они противодействие».

Кроме названия, все значения термина объединяет также векторная величина. Она равна произведению массы тела на его ускорение и направлена противоположно ускорению. Краткие определения силы инерции иногда отражают это общее свойство всех значений термина:

Векторная величина, равная произведению массы материальной точки на её ускорение и направленная противоположно ускорению, называется силой инерции.

Движение в инерциальной СО

Выполнив тривиальную математическую операцию в выражении (5) и перенеся член из правой части в левую, получаем безупречную математически запись: + = 0 (6)

С физической точки зрения сложение векторов сил имеет своим результатом получение равнодействующей силы. В таком случае прочтённое с точки зрения физики выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, оба тела не могут двигаться ускоренно. С другой стороны здесь не высказаны никакие запреты на ускоренное движение тел. Получается, что тело движется ускоренно при отсутствии действующих на него сил.

Это противоречие разрешается тем, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6)не указывает на взаимную нейтрализацию их действия.

Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта: (7)

Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства относятся к одному и тому же телу и обозначают одно и то же..

Но выражение (7) может быть подобно (6) переписано как: =0 (8)

Для постороннего, находящегося в инерциальной системе наблюдателя и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть

(9)

В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее называют силами инерции или, как предложено в «ньютоновыми силами инерции» что соответствует записи выражения (5) для Третьего закона в новых обозначениях: (10)

Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие.

Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого он идёт). В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как C"связь, ускоряющая тело, но не ускоряемая сама по себе.

Пример 1 При движении тела по окружности под действием центростремительной силы , являющейся одновременно результатом наложенной на движение тела связи, действующая на эту связь сила будет одновременно и силой противодействия, и «центробежной силой инерции»

В инерциальной СОсила инерции не приложена к ускоряемому телу, но к связи.

29 Принцип относительности

При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.

Различают принцип относительности %82"Эйнштейна (который приведён выше) и F"принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость F"преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к "оптике и "электродинамике.

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как C"лоренц-ковариантность (или лоренц-инвариантность).

История

Отцом принципа относительности считается %BE"Галилео Галилей, который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. В своей книге «Диалоги о двух системах мира» Галилей сформулировал принцип относительности следующим образом:

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Идеи Галилея нашли развитие в "механике %BA"Ньютона. В своих "«Математических началах натуральной философии» (том I, следствие V) Ньютон так сформулировал принцип относительности:

Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.

Однако с развитием "электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом, так как уравнения механики в известном тогда виде не менялись после преобразований Галилея, а уравнения Максвелла при применении этих преобразований к ним самим или к их решениям — меняли свой вид и, главное, давали другие предсказания (например, измененную скорость света). Эти противоречия привели к открытию "преобразований Лоренца, которые делали применимым принцип относительности к электродинамике (сохраняя инвариантной "скорость света), и к постулированию их применимости также к "механике, что затем было использовано для исправления механики с их учетом, что выразилось, в частности, в созданной Эйнштейном "Специальной теории относительности. После этого обобщённый принцип относительности (подразумевающий применимость и к механике, и к электродинамике, а также к возможным новым теориям, подразумевающий также "преобразования Лоренца для перехода между инерциальными системами отсчета) стал называться «принципом относительности Эйнштейна», а его механическая формулировка — «принципом относительности Галилея».

Принцип относительности, включающий явно все электродинамические и оптические явления, был, по-видимому, впервые введен "Анри Пуанкаре начиная с "1889 года (когда им впервые высказано предположение о принципиальной ненаблюдаемости движения относительно эфира) до работ 1895, 1900, 1902, когда принцип относительности был сформулирован детально, практически в современном виде, в том числе введено его современное название и получены многие принципиальные результаты, повторенные позже другими авторами, такие как например детальный анализ относительности одновременности, практически повторенный в работе Эйнштейна 1905. Пуанкаре также, по признанию Лоренца, был человеком, вдохновившим введение принципа относительности как точного (а не приближённого) принципа в работе Лоренца 1904, а впоследствии внёсшим необходимые исправления в некоторые формулы этой работы, в которых у Лоренца обнаружились ошибки.

В этой принципиальной статье %BD"Х. А. Лоренца (1904 г.), содержавшей вывод "преобразований Лоренца и другие революционные физические результаты в достаточно завершённой форме (за исключением упомянутых технических ошибок, не следовавших из метода, исправленных Пуанкаре), он, в частности, писал: «Положение вещей было бы удовлетворительным, если бы можно было с помощью определенных основных допущений показать, что многие электромагнитные явления строго, то есть без какого-либо пренебрежения членами высших порядков, не зависят от движения системы. … На скорость налагается только то ограничение, что она должна быть меньше скорости света». Затем, в работе "1904 года Пуанкаре дополнительно углубил результаты Лоренца, донеся значение принципа относительности до довольно широких кругов физиков и математиков. Дальнейшее развитие практического использования принципа относительности для построения новой физической теории было в 1905 г. в статье "А. Пуанкаре «О динамике электрона» (1905), называвшего его в этой работе «постулатом относительности Лоренца», и в практически одновременной статье %BD"А. Эйнштейна «К электродинамике движущихся тел».

Х. А. Лоренц писал в 1912 г.: «Заслуга Эйнштейна состоит в том, что он первый высказал принцип относительности в виде всеобщего строго и точно действующего закона». Это его утверждение, возможно, означает, что в у Эйнштейна принцип был выражен «с наибольшей резкостью», и Лоренц хотел отдать ему в этом должное, тем более что Пуанкаре после 1904 года приписывал этот принцип самому Лоренцу, очевидно, ради признания важности работ последнего вообще и работы 1904 года в частности, а Лоренц не хотел принять такой чести, считая, что его собственное понимание принципа относительности (а может быть, даже и его приятие) было недостаточным, в отличие от эйнштейновского. Лоренц выделил таким образом заслуги Эйнштейна, а не Пуанкаре, по-видимому, из-за того, что Пуанкаре «не шёл до конца», продолжая признавать возможность и вероятную продуктивность использования %29"эфира как абсолютной системы отсчёта. Возможно также, Лоренц просто указывал на отличие отрицающего эфир подхода Эйнштейна, основывающегося целиком лишь на принципе относительности, от подхода Пуанкаре, который продолжал разделять и сам Лоренц и который базировался не только на принципе относительности, взятом в качестве необсуждаемого постулата, но и на других аргументах, хотя результаты того и другого подхода совпадали, а в будущем Пуанкаре считал возможность обнаружения нарушений принципа относительности маловероятной (хотя абсурдной саму такую возможность не считал). Лоренц подчёркивает, что именно Эйнштейн перевёл принцип относительности из ранга гипотезы в ранг фундаментального закона природы.

В упомянутых и дальнейших работах перечисленных авторов, а также и других, среди которых следует выделить %BA"Планка и %BD"Минковского, применение принципа относительности позволило полностью переформулировать механику быстро движущихся тел и тел, обладающих большой энергией ("релятивистская механика), и физика в целом получила сильнейший толчок к своему развитию, значение которого трудно переоценить. Впоследствии в целом к этому направлению в развитии физики (построенном на принципе относительности в отношении равномерно прямолинейно движущихся систем отсчета) применяется название "специальная теория относительности.

Очевидно, принцип относительности и выросшая из него идея геометризации пространства-времени сыграли важную роль при распространении на неинерциальные системы отсчета (учитывая "принцип эквивалентности), то есть в создании новой теории гравитации —E"общей теории относительности Эйнштейна. Остальная теоретическая физика также ощутила влияние принципа относительности не только непосредственно, но и в смысле повышенного внимания к %29"симметриям.

Можно заметить, что даже если когда-либо обнаружится, что принцип относительности не выполняется точно, его огромная конструктивная роль в науке своего времени (длящаяся по меньшей мере до сих пор) настолько велика, что ее даже трудно с чем-нибудь сравнить. Опора на принцип относительности (а потом также еще и на некоторые его расширения) позволила открыть, сформулировать и продуктивно разработать такое количество первостепенных теоретических результатов, практически не мыслимых без его применения, во всяком случае, если говорить о реальном пути развития физики, что его можно назвать основой, на которой построена физика.

30 Специальная теория относительности

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы "механики и пространственно-временные отношения при произвольных C"скоростях движения, меньших скорости света в вакууме, в том числе близких к "скорости света. В рамках специальной теории относительности "классическая механика %BA"Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется "общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Основные понятия и постулаты СТО

Специальная теория относительности, как и любая другая F"физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам.

Основные понятия

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают "системы отсчёта и %82"системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется "координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка %82"света, положение "материальной точки в данный момент времени и т. п.

Обычно рассматриваются две "инерциальные системы S и S'. Время и координаты некоторого "события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что %82"координатные оси систем параллельны друг другу и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются "преобразованиями Лоренца.

Изотропность пространства

Пространство в "инерциальных системах отсчёта предполагается "изотропным (нет выделенных направлений). Это приводит к тому, что γ(v) является F"чётной функцией скорости: γ( − v) = γ(v).

Рассмотрим, например, измерение "длины некоторого объекта (линейки), неподвижного в системе отсчёта S'. Если одновременно (Δt = 0) в системе S измерить координаты «начала» и «конца» линейки, то её длина Δx' = γ(vx не должна зависеть от направления (знака) скорости v, откуда следует, что F"функция γ(v) является чётной.

Принцип относительности

Ключевым для аксиоматики специальной теории относительности является "принцип относительности, утверждающий равноправие "инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между "ИСО.

Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть C"скорость системы S2 относительно системы S1 равна v1, скорость системы S3 относительно S2 равна v2, а относительно S1, соответственно, v3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:

Так как относительные скорости систем отсчёта v1 и v2 произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение σ(v) / v равно некоторой константе α, единой для всех "инерциальных систем отсчёта, и, следовательно, .

Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию .

Таким образом, с точностью до произвольной константы α, получается явный вид преобразований между двумя "ИСО. О численном значении константы α и её знаке без обращения к %82"эксперименту ничего сказать нельзя. Если α > 0, то удобно ввести обозначение α = 1 / c2. Тогда преобразования принимают следующий вид:

и называются "преобразованиями Лоренца. Из дальнейшего анализа станет ясно, что константа имеет смысл максимальной C"скорости движения любого объекта. Подобный вывод "преобразований Лоренца стал известен спустя 5 лет после известной статьи %82"Эйнштейна 1905 года, благодаря работам %87"ИгнатовскогоHYPERLINK "http://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8", Франка и Роте (см. "исторический очерк).

Постулат постоянства скорости света

Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что "скорость света c не зависит от скорости движения источника и одинакова во всех "инерциальных системах отсчёта. Именно при помощи этого %82"постулата и принципа относительности %82"Альберт Эйнштейн в 1905 г. получил "преобразования Лоренца с фундаментальной константой c, имеющей смысл "скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается "теоремой теории и непосредственно следует из "преобразований Лоренца (см. "релятивистское сложение скоростей). Тем не менее, в силу его исторической важности, "вывод преобразований Лоренца широко используется в учебной литературе.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно F"преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. B"Фундаментальная константа c, возникающая в "преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы %BD"фотон имел отличную от нуля массу, "преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость c и скорость света cem. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного "взаимодействия. Чтобы измерить фундаментальную скорость c, нет необходимости проводить "электродинамические эксперименты. Достаточно, воспользовавшись, например, "релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух "ИСО, получить значение фундаментальной скорости c.

31

Преобразования Лоренца

Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) %BE"псевдоевклидова пространства, сохраняющее 0%94%D0%BB%D0%B8%D0%BD%D0%B0"длины или, что эквивалентно, %A"скалярное произведение векторов.

Преобразования Лоренца псевдоевклидова пространства %29"сигнатуры (n-1,1) находят широкое применение в физике, в частности, в "специальной теории относительности (СТО), где в качестве аффинного %BE"псевдоевклидова пространства выступает четырёхмерный пространственно-временной континуум (%BE"пространство Минковского).

Преобразования Лоренца в физике

Преобразованиями Лоренца в физике, в частности, в "специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно-временные координаты (x,y,z,t) каждого события при переходе от одной "инерциальной системы отсчета (ИСО) к другой. Аналогично, преобразованиям Лоренца при таком переходе подвергаются координаты любого %80"4-вектора.

Чтобы явно различить преобразования Лоренца со сдвигами начала отсчёта и без сдвигов, когда это необходимо, говорят о неоднородных и F"однородных преобразованиях Лоренца.

Преобразования Лоренца без сдвигов начала отсчёта образуют "группу Лоренца, со сдвигами —"группу Пуанкаре, иначе называемую неоднородной группой Лоренца.

С математической точки зрения преобразования Лоренца — это преобразования, сохраняющие неизменной %BE"метрику Минковского, то есть, в частности, последняя сохраняет при них простейший вид при переходе от одной инерциальной системы отсчёта к другой (другими словами преобразования Лоренца — это аналог для метрики Минковского ортогональных преобразований, осуществляющих переход от одного ортонормированного базиса к другому, то есть аналог поворота координатных осей для пространства-времени). В математике или теоретической физике преобразования Лоренца могут относиться к любой размерности пространства.

Именно преобразования Лоренца, смешивающие — в отличие от F"преобразований Галилея — пространственные координаты и время, исторически стали основой для формирования концепции единого F"пространства-времени.

  • Следует заметить, что лоренц-ковариантны не только фундаментальные уравнения (такие, как уравнения Максвелла, описывающее электромагнитное поле, уравнение Дирака, описывающее электрон и другие фермионы), но и такие макроскопические уравнения, как волновое уравнение, описывающее (приближенно) звук, колебания струн и мембран, и некоторые другие (только тогда уже в формулах преобразований Лоренца под c следует иметь в виду не скорость света, а какую-то другую константу, например скорость звука). Поэтому преобразования Лоренца могут быть плодотворно использованы и в связи с такими уравнениями (хотя и в довольно формальном смысле, впрочем, мало отличающемся — в своих рамках — от их применения в фундаментальной физике).

Вывод преобразований

Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым c), как обобщение F"преобразований Галилея (что было проделано "Пуанкаре —"см. ниже). Однако впервые они были получены как преобразования, относительно которых ковариантны "уравнения Максвелла (то есть по сути — которые не меняют вида законов электродинамики и оптики при переходе к другой системе отсчёта). Могут также быть получены из предположения линейности преобразований и постулата одинаковости скорости света во всех системах отсчёта (являющегося упрощённой формулировкой требования ковариантности электродинамики относительно искомых преобразований, и распространением принципа равноправия инерциальных систем отсчёта —"принципа относительности — на "электродинамику), как это делается в "специальной теории относительности (СТО) (при этом c в преобразованиях Лоренца получается определённым и совпадает со %A"скоростью света).

Надо заметить, что если не ограничивать класс преобразований координат линейными, то "первый закон Ньютона выполняется не только для преобразований Лоренца, а для более широкого класса F"дробно-линейных преобразований(однако этот более широкий класс преобразований — за исключением, конечно, частного случая преобразований Лоренца — не сохраняет метрику постоянной).

Преобразования Лоренца в матричном виде

Для случая коллинеарных осей преобразования Лоренца записываются в виде

,

где .

При произвольной ориентации осей, в форме 4-векторов это преобразование записывается как:

где E — единичная матрица 3 3, %A"тензорное умножение трехмерных векторов.

Надо иметь в виду, что в литературе матрица преобразований Лоренца часто записывается для упрощения в системе единиц, где c = 1.

Произвольное однородное преобразование Лоренца можно представить как некоторую "композицию вращений пространства и элементарных преобразований Лоренца, затрагивающих только время и одну из координат. Это следует из алгебраической теоремы о разложении произвольного вращения на простые.

Свойства преобразований Лоренца

  • Можно заметить, что в случае, когда , преобразования Лоренца переходят в F"преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с "механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последее объясняет, каким образом сочетаются эти две теории — первая является обобщением и уточнением второй, а вторая — предельным случаем первой, оставаясь в этом качестве верной приближенно (с некоторой точностью, на практике часто очень и очень большой) при достаточно малых (по сравнению со скоростью света) скоростях движений.

  • Преобразования Лоренца сохраняют инвариантным %29"интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства-времени Минковского: Убедиться в этом нетрудно, например, проверив явно то, что матрица преобразования Лоренца L "ортогональна в смысле метрики Минковского определяемой таким выражением, то есть . Это проще всего проделать для буста, а для трехмерных вращений это очевидно из определения декартовых координат, кроме того, сдвиги начала отсчёта не меняют разностей координат. Следовательно, это свойство верно и для любых композиций бустов, вращений и сдвигов, что и составляет полную группу Пуанкаре; как только мы узнали, что преобразования координат "ортогональны, из этого сразу следует, что формула для расстояния остаётся неизменной при переходе к новой системе координат — по определению ортогональных преобразований.

  • В частности, инвариантность интервала имеет место и для случая s = 0, а значит —C"гиперповерхность в пространстве-времени, которая определяется равенством нулю интервала до заданной точки —%81"световой конус — является неподвижной при преобразованиях Лоренца (что является проявлением инвариантности скорости света). Внутреность двух полостей конуса соответствует времениподобным —%BE"вещественным — интервалам от их точек до вершины, внешняя область — пространственноподобным —%BE"чисто мнимым (в принятой в этой статье сигнатуре интервала).

  • Другие инвариантные гиперповерхности однородных преобразований Лоренца (аналоги сферы для пространства Минковского) — гиперболоиды: "двуполостный гиперболоид для времениподобных интервалов относительно начала координат, и "однополостный — для пространственноподобных интервалов.

  • Матрицу преобразования Лоренца при коллинеарных пространственных осях (в системе единиц c=1) можно представить как:

где . В этом легко убедиться, учитывая и проверив выполнение соответствующего тождества для матрицы преобразования Лоренца в обычном виде.

  • Если принять введённые Минковским обозначения , то преобразование Лоренца для такого пространства сводится к повороту на мнимый угол в плоскости, включающей ось (для случая движения вдоль оси — в плоскости x0x1). Это очевидно, исходя из подстановки в матрицу, приведенную чуть выше — и её небольшого изменения для того, чтобы учесть вводимую мнимость временной координаты — и сравнении её с обычной матрицей вращения.

32

Лоренцево сокращение

Лоренцево сокращение, %81"Фицджеральдово сокращение, также называемое релятивистским сокращение длины движущегося тела или масштаба — предсказываемый "релятивистской %29"кинематикой эффект, заключающийся в том, что с точки зрения "наблюдателя движущиеся относительно него %29"предметы имеют меньшую "длину (линейные размеры в направлении движения), чем их "собственная длина. "Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше C"скорость движения предмета.

Эффект значим, только если скорость предмета по отношению к наблюдателю сравнима со "скоростью света.

Строгое определение

Пусть стержень длины l движется (вдоль своей длины) со скоростью v относительно некой "системы отсчёта. В таком случае в фиксированный "момент времени "расстояние между концами стержня составит

 , где c — скорость света.

Величина, обратная ко множителю с C"корнем называется также %80"Лоренц-фактором. С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки пространства составит

 .

При этом, все размеры поперёк движения не меняются.

Относительность промежутков времени

При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями. В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении.

Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства, достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы). Измерение промежутка времени опирается на понятие одновременности: длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса, от показания тех же часов, одновременного с началом процесса. Если же оба события происходят в разных точках системы отсчета, то для измерения промежутков времени между ними в этих точках необходимо иметь синхронизованные часы.

Эйнштейновское определение процедуры синхронизации часов основано на независимости скорости света в пустоте от направления распространения. Пусть из точки A в момент времени t1 по часам A отправляется короткий световой импульс (рис. 4.2.1). Пусть время прихода импульса в B и отражения его назад на часах B есть t'. Наконец, пусть отраженный сигнал возвращается в A в момент t2 по часам A. Тогда по определению часы в A и B идут синхронно, если t' = (t1 + t2) / 2.

Существование единого мирового времени, не зависящего от системы отсчета, которое принималось как очевидный факт в классической физике, эквивалентно неявному допущению о возможности синхронизации часов с помощью сигнала, распространяющегося с бесконечно большой скоростью.

Итак, в разных точках выбранной системы отсчета можно расположить синхронизованные часы. Теперь можно дать определение понятия одновременности событий, происходящих в пространственно-разобщенных точках: эти события одновременны, если синхронизованные часы показывают одинаковое время.

Рассмотрим теперь вторую инерциальную систему K', которая движется с некоторой скоростью υ в положительном направлении оси x системы K. В разных точках этой новой системы отсчета также можно расположить часы и синхронизировать их между собой, используя описанную выше процедуру. Теперь интервал времени между двумя событиями можно измерять как по часам в системе K, так и по часам в системе K'. Будут ли эти интервалы одинаковы? Ответ на этот вопрос должен находиться в согласии с постулатами СТО.

Пусть оба события в системе K' происходят в одной и той же точке и промежуток времени между ними равен τ0 по часам системы K'. Этот промежуток времени называется собственным временем. Каким будет промежуток времени между этими же событиями, если его измерить по часам системы K?

Для ответа на этот вопрос рассмотрим следующий мысленный эксперимент. На одном конце твердого стержня некоторой длины l расположена импульсная лампа B, а на другом конце – отражающее зеркало M. Стержень расположен, неподвижно в системе K' и ориентирован параллельно оси y' (рис. 4.2.2). Событие 1 – вспышка лампы, событие 2 – возвращение короткого светового импульса к лампе.

В системе K' оба рассматриваемых события происходят в одной и той же точке. Промежуток времени между ними (собственное время) равен τ = 2l / c. С точки зрения наблюдателя, находящегося в системе K, световой импульс движется между зеркалами зигзагообразно и проходит путь 2L, равный

где τ – промежуток времени между отправлением светового импульса и его возвращением, измеренный по синхронизованным часам C1 и C2, расположенными в разных точках системы K. Но согласно второму постулату СТО, световой импульс двигался в системе K с той же скоростью c, что и в системе K'. Следовательно, τ = 2L / c.

Из этих соотношений можно найти связь между τ и τ0:

где β = υ / c.

Таким образом, промежуток времени между двумя событиями зависит от системы отсчета, т. е. является относительным. Собственное время τ0 всегда меньше, чем промежуток времени между этими же событиями, измеренный в любой другой системе отсчета. Этот эффект называют релятивистским замедлением времени. Замедление времени является следствием инвариантности скорости света.

Эффект замедления времени является взаимным, в согласии с постулатом о равноправии инерциальных систем K и K': для любого наблюдателя в K или K' медленнее идут часы, связанные с системой, движущейся по отношению к наблюдателю. Этот вывод СТО находит непосредственное опытное подтверждение. Например, при исследовании космических лучей в их составе обнаружены μ-мезоны – элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их среднее собственное время жизни равно τ0 = 2,2·10–6 с. Но в космических лучах μ-мезоны движутся со скоростью, близкой к скорости света. Без учета релятивистского эффекта замедления времени они в среднем пролетали бы в атмосфере путь, равный cτ0 ≈ 660 м. На самом деле, как показывает опыт, мезоны за время жизни успевают пролетать без распада гораздо большие расстояния. Согласно СТО, среднее время жизни мезонов по часам земного наблюдателя равно , так как β = υ / c близко к единице. Поэтому средний путь υτ, проходимый мезоном в земной системе отсчета, оказывается значительно больше 660 м.

С релятивистским эффектом замедления времени связан так называемый «парадокс близнецов». Предполагается, что один из близнецов остается на Земле, а второй отправляется в длительное космическое путешествие с субсветовой скоростью. С точки зрения земного наблюдателя, время в космическом корабле течет медленнее, и когда астронавт возвратится на Землю, он окажется гораздо моложе своего брата-близнеца, оставшегося на Земле. Парадокс заключается в том, что подобное заключение может сделать и второй из близнецов, отправляющийся в космическое путешествие. Для него медленнее течет время на Земле, и он может ожидать, что по возвращению после длительного путешествия на Землю он обнаружит, что его брат-близнец, оставшийся на Земле, гораздо моложе его.

Чтобы разрешить «парадокс близнецов», следует принять во внимание неравноправие систем отсчета, в которых находятся оба брата-близнеца. Первый из них, оставшийся на Земле, все время находится в инерциальной системе отсчета, тогда как система отсчета, связанная с космическим кораблем, принципиально неинерциальная. Космический корабль испытывает ускорения при разгоне во время старта, при изменении направления движения в дальней точке траектории и при торможении перед посадкой на Землю. Поэтому заключение брата-астронавта неверно. СТО предсказывает, что при возвращении на Землю он действительно окажется моложе своего брата, оставшегося на Земле.

Эффекты замедления времени пренебрежимо малы, если скорость космического корабля гораздо меньше скорости света c. Тем не менее, удалось получить прямое подтверждение этого эффекта в экспериментах с макроскопическими часами. Наиболее точные часы – атомные работающие на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду. Американские физики в 1971 году провели сравнение двух таких часов, причем одни из них находились в полете вокруг Земли на обычном реактивном лайнере, а другие оставались на Земле в военно-морской обсерватории США. В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на (184 ± 23)·10–9 с. Наблюдаемое отставание составило (203 ± 10)·10–9 с, т. е. в пределах ошибок измерений. Через несколько лет эксперимент был повторен и дал результат, согласующийся со СТО с точностью 1 %.

В настоящее время уже необходимо принимать во внимание релятивистский эффект замедления хода часов при транспортировке атомных часов на большие расстояния.

33

Интервал (теория относительности)

Интервал в "теории относительности — расстояние между двумя событиями в пространстве-времени, являющееся обобщением евклидового расстояния между двумя точками. Интервал C"лоренц-инвариантен, то есть не меняется при переходе от одной инерциальной системы отсчёта к другой, и, даже более, является %29"инвариантом (%80"скаляром) в специальной и общей теории относительности.

Это свойство интервала делает его фундаментальным понятием, на основе которого может, в соответствии с "принципом относительности, быть осуществлена ковариантная формулировка физических законов. В частности, "преобразования Лоренца (преобразования координат, включая время, оставляющие неизменной запись всех фундаментальных уравнений физики при замене системы отсчёта) могут быть формально найдены как %29"группа преобразований, сохраняющих интервал инвариантным.

Инвариантность интервала послужила основой для введения %BE"пространства Минковского, в котором смене инерциальных систем отсчёта соответствуют «вращения» этого пространства, что явилось первой явной формулировкой концепции F"пространства-времени.

Определение

Квадрат интервала — это симметричная "билинейная форма на конфигурационном 4-мерном "многообразии пространства-времени. При должным образом выбранных координатах (галилеевых — локально инерциальная система отсчета с декартовыми пространственными координатами и временем ) для бесконечно малого смещения в пространстве-времени он имеет вид:

(локально %BE"псевдоевклидово пространство-время, %BE"пространство Минковского в главном порядке, иначе говоря — многообразие с индефинитной "псевдоримановой метрикой сигнатуры (+---)).

В случае плоского пространства-времени — то есть пространства времени без "кривизны, к которому в современной физике относится случай отсутствия (или пренебрежимой малости) гравитации — такое же выражение имеет место и для конечных разностей координат:

(такое пространство уже точно и глобально является пространством Минковского, если, конечно, топологически оно эквивалентно в своей естественной топологии).

Обычно интервал обозначается латинской буквой .

В E"общей теории относительности используется обобщённое понятие интервала, дающее естественное обобщение расстояния между двумя точками. Вводится %80"метрический тензор gik, от которого требуется лишь симметричность и "невырожденность. Выражение для квадрата интервала между двумя бесконечно близкими точками приобретает вид:

,

где dxi — дифференциалы координат, и по повторяющимся индексам подразумевается суммирование, то есть это выражение означает

.

Обратим внимание, что таким образом определённая "метрика не будет положительно определённой квадратичной формой, как обычно требуется в случае собственно римановых многообразий. Напротив, подразумевается, что всегда или почти всегда локально могут быть так выбраны пространственно-временные координаты (система отсчета), что интервал для малой области пространства-времени в этих координатах запишется так же, как он записывается для лоренцевских координат (систем отсчета) в плоском пространстве Минковского:

,

так что через точку пространства-времени проходит бесконечно много линий, имеющих нулевую «длину» (при определении длины в пространстве-времени через его «физическую метрику» — то есть, как интеграл от ) — образующих %81"световой конус; бесконечно много линий, длина которых вещественна — они все во внутренней области светового конуса; и бесконечно много тех, длина которых чисто мнима — вблизи данной точки они все во внешней области светового конуса с вершиной в ней, если они гладки.

  • Знак квадрата интервала — предмет соглашения. Он может быть выбран (и исторически был) противоположным. В наше время, пожалуй, чаще используется выбор знака как выше в этой статье. Однако иногда противоположный удобнее, если используется введённая %BD"Минковским и нередко удобная интерпретация временной координаты как чисто мнимой.

  • Нумерация координат xi — также предмет соглашения, однако в современной литературе чаще всего они нумеруются как и здесь — от 0 до 3, причём временной координате приписывается индекс 0.

  • В теоретических построениях, использующих пространство-время большей размерности, определение интервала естественным образом обобщается добавлением в сумму ещё некоторого количества пространственных координат. При этом чаще всего (хотя не всегда) предполагается, что временная координата остаётся единственной, то есть обычно только одно слагаемое входит со знаком, противоположным всем остальным.

  • Многообразие с заданным на нём невырожденным интервалом (или, другими словами, невырожденной метрикой) называется "псевдоримановым, точнее — собственно псевдоримановым, чтобы подчеркнуть отличие от "риманова многообразия, в котором метрика — в отличие от интервала — положительно определённая, как и обычное евклидовское расстояние.

  • Определения интервала несколько различаются в специальной и общей теории относительности. Это связано с тем, что интервал между двумя произвольными точками пространства-времени Минковского можно ввести, не сталкиваясь с трудностями, как длину соединяющей их прямой линии (геодезической), как это и сделано выше. Однако для общего вида искривлённого пространства-времени этого уже сделать так просто нельзя, так как точки могут соединяться несколькими различными геодезическими (или даже бесконечным их числом). Поэтому интервал в общей теории относительности определяют обычно в бесконечно малой окрестности заданной точки, где исходящие из неё различные геодезические ещё не пересекаются, а расстояние по геодезическим линиям от одной точки до другой называют мировой функцией.

34

Релятивистская механика

Релятивистская механика — раздел "физики, рассматривающий законы "механики (законы движения тел и частиц) при скоростях, сравнимых со "скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) "механику.

Общие принципы

Релятивистская механика — теория, в которой, в отличие от классической механики, где пространственные координаты и время являются независимыми, при отсутствии голономных связей зависящих от времени, (время является абсолютным, то есть течёт одинаково во всех системах отсчёта) и действуют F"преобразования Галилея, события происходят в четырёхмерном пространстве, объединяющем физическое трёхмерное пространство и время (%BE"пространство Минковского) и действуют "преобразования Лоренца. Таким образом, в отличие от классической механики, одновременность событий зависит от выбора системы отсчёта.

Основные законы релятивистской механики — релятивистское обобщение второго закона Ньютона и релятивистский закон сохранения энергии-импульса являются следствием такого «смешения» пространственных и временной координат при "преобразованиях Лоренца.

Второй закон Ньютона в релятивистской механике

Сила определяется, как , также известно выражение для релятивисткого импульса

(1).

Таким образом, для определения силы, достаточно взять производную от выражения (1), по времени, получим:

, где

.

Таким образом, сравнивая с ньютоновым выражением , видно, что в релятивизме, кроме нормальной составляющей силы, также есть и тангенциальная.

Функция Лагранжа свободной частицы в релятивистской механике

Запишем интеграл действия, исходя из принципа наименьшего действия: , где α-положительное число. Как известно из специальной теории относительности ("СТО) , подставляя в интеграл движения, находим: . Но, с другой стороны, интеграл движения, можно выразить через функцию Лагранжа: . Сравнивая последние два выражения, нетрудно понять, что подынтегральные выражения должны быть равны, то есть:

.

Далее, разложим последнее выражение по степеням , получим:

, первый член разложения не зависит от скорости, а значит не вносит никаких изменений в уравнения движения. Тогда, сравнивая с классическим выражением функции Лагранжа: , нетрудно определить константу α:

α = mc. Таким образом, окончательно получаем вид функции Лагранжа свободной частицы:

.

Рассуждения, приведенные выше, можно рассматривать не только для частицы, но и для произвольного тела, лишь бы его части двигались как одно целое.

Релятивистская частица как "неголономная система

Поскольку квадрат 4-вектора импульса Pα является постоянной величиной:

PαPαm2c2 = 0,

то релятивистская частица может рассматриваться как "механическая система с "неголономной связью в 4-мерном псевдоевклидовом пространстве.

35

Эквивалентность массы и энергии

Эквивале́нтность ма́ссы и эне́ргии"физическая F"концепция, согласно которой "масса тела является мерой F"энергии, заключённой в нём. Энергия тела равна массе тела, умноженной на C"размерный множитель квадрата "скорости света в вакууме:

где E — энергия тела, m — его масса, c — скорость света в вакууме, равная 299 792 458 0%9C%D0%B5%D1%82%D1%80_%D0%B2_%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D1%83"м/HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80_%D0%B2_%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D1%83"с.

Данная концепция может быть интерпретирована двояко:

  • с одной стороны, концепция означает, что масса неподвижного тела (так называемая масса покоя) является мерой F"внутренней энергии этого тела;

  • с другой стороны, можно утверждать, что любому виду энергии соответствует некая масса. Например, было введено понятие релятивистской массы как характеристики F"кинетической энергии движущегося тела.

В современной теоретической физике концепцию эквивалентности массы и энергии обычно используют в первом смысле. Главной причиной, почему приписывание массы любому виду энергии считается неудачным, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого принципа может запутывать и в конечном итоге не является оправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорят о массе, имеют в виду массу покоящегося тела. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. При этом под этим термином понимается увеличение F"инертных свойHYPERLINK "http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%8F"ств движущегося тела.

В наиболее универсальной форме принцип был сформулирован впервые %82"Альбертом Эйнштейном в "1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.

В современной культуре формула E = mc2 является едва ли не самой известной из всех физических формул, что обуславливается её связью с устрашающей мощью "атомного оружия. Кроме того, именно эта формула является символом "теории относительности и широко используется популяризаторами науки.

Масса покоя как вид энергии

Исторически принцип эквивалентности массы и энергии был впервые сформулирован в своей окончательной форме при построении "специальной теории относительности %82"А. Эйнштейном. Им было показано, что для свободно движущейся "релятивистской частицы (а также тела и вообще любой системы частиц) выполняются следующие соотношения:

где E, , , m —F"энергия, %81"импульс, C"скорость и F"масса покоя частицы соответственно, c —"скорость света. Из этих выражений видно, что в "релятивистской механике, даже когда обращаются в нуль скорость и импульс массивного тела, его энергия в нуль не обращается, оставаясь равной некоторой величине, определяемой массой тела:

Эта величина носит название энергии покоя, и данное выражение устанавливает эквивалентность массы тела этой энергии. Таким образом, Эйнштейном был сделан вывод, что масса тела является одной из форм энергии, тем самым B"законы сохранения массы и "энергии были объединены в один закон сохранения.

Энергия и импульс тела являются компонентами %80"4-вектора энергии-импульса и соответствующим образом преобразуются при переходе из одной "системы отсчёта в другую, а масса тела является %82"лоренц-инвариантом, оставаясь при переходе в другие системы отсчёта постоянной и имея смысл "модуля вектора %81"4-импульса.

Следует также отметить, что несмотря на то, что энергия и импульс частиц C"аддитивны, то есть для системы частиц имеем:

(1)

масса частиц аддитивной не является. То есть масса системы частиц, в общем случае, не равна сумме масс составляющих её частиц.

Понятие релятивистской массы

После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может использоваться двояко. С одной стороны, это та масса, которая фигурирует в "классической физике, с другой — можно ввести так называемую релятивистскую массу как меру полной (включая кинетическую) энергии тела. Эти две массы связаны между собой соотношением:

где mrel — релятивистская масса, m — «классическая» масса (равная массе покоящегося тела), v — скорость тела. Введённая таким образом релятивистская масса является коэффициентом пропорциональности между импульсом и скоростью тела:

Аналогичное соотношение выполняется для классических импульса и массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Введённая таким образом релятивистская масса в дальнейшем привела к тезису, что масса тела зависит от скорости его движения.

В процессе создания теории относительности обсуждались понятия продольной и поперечной массы частицы. Пусть сила, действующая на частицу, равна скорости изменения релятивистского импульса. Тогда связь силы и ускорения существенно изменяется по сравнению с классической механикой:

Если скорость перпендикулярна силе, то а если параллельна, то где  —"релятивистский фактор. Поэтому mγ = mrel называют продольной массой, а mγ3 — поперечной.

Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей %81"парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая массу покоя. В частности, выделяются следующие недостатки введения термина «релятивистская масса»:

  • неинвариантность релятивистской массы относительно "преобразований Лоренца;

  • синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;

  • наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналога "второго закона Ньютона в виде

  • методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;

  • путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть — другое.

Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной, и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения C"инертности частицы, движущейся с околосветовой скоростью.

36

Статистический и термодинамический методы исследования. Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с очень большим числом в телах атомов и молекул. Для исследования этих процессов используют два принципиально различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики. Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, которые основываны на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении. Процессы, которые изучает молекулярная физика, есть результат совокупного действия огромного числа молекул. Физические законы поведения огромного числа молекул, которые являются статистическими закономерностями, изучаются статистическими методами. Данные методы основаны на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями характеристик их движения и усредненными значениями динамических характеристик этих частиц (чаще всего это скорости, энергии и т. д.). Например, температура тела характеризуется скоростью хаотического движения его молекул, но поскольку в разные моменты времени разные молекулы имеют различные скорости, то температура может быть выражена только через усредненную характеристику скорости движения молекул, например ее среднее арифметическое. Нельзя говорить о температуре одной молекулы. Значит, макроскопические характеристики тел имеют физический смысл только для большого числа молекул. Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не исследует микропроцессы, лежащие в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика имеет основой два начала — фундаментальные законах, которые установленны в результате обобщения опытных данных. Термодинамика имеет гораздо более широкую область применения, чем молекулярно-кинетической теория, ибо не существует таких областей физики и химии, где нельзя было бы применять термодинамический метод. С другой стороны, термодинамический метод достаточно ограничен: термодинамика как наука ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь дает связи между макроскопическими свойствами вещества. Термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, при этом образуя единое целое, но отличаясь различными методами исследования. Термодинамика работает с термодинамической системой — совокупностью макроскопических тел, взаимодействующие и обменивающиеся энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода — определение состояния термодинамической системы, состояние которой задается термодинамическими параметрами (или параметрами состояния) — множеством физических величин, которые характеризуют свойства термодинамической системы. Чаще всего в качестве параметров состояния выбирают температуру, давление удельный объем и давление. Температура — одно из фундаментальных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно использовать только две температурные шкалы — термодинамическую и Международную практическую, градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С). В Международной практической шкале температура замерзания и кипения воды при давлении 1,013•105 Па соответственно 0 и 100°С (реперные точки). Законы Гей-Люссака: 1) объем данной массы газа при постоянном давлении изменяется линейно с температурой: V=V0(1+αt) (2) 2) давление данной массы газа при постоянном объеме изменяется линейно с температурой: p=p0(1+αt) (3) В этих уравнениях t — температура по шкале Цельсия, p0 и V0 — давление и объем при 0°С, коэффициент α = 1/273,15 К–1. Процесс, который протекает при постоянном давлении, называется изобарным. На диаграмме в координатах V, t (рис. 2) этот процесс изображается прямой, называемой изобарой. Процесс, который протекает при постоянном объеме, называется изохорным. На диаграмме в координатах р, t (рис. 3) он изображается прямой, называемой изохорой. Из (2) и (3) следует, что изобары и изохоры пересекают ось температур в точке t=–1/α=–273,15°С, определяемой из условия 1+αt = 0. Если перенести начало отсчета в эту точку, то происходит переход к шкале Кельвина (рис. 62), откуда T= t + 1/α Вводя в формулы (2) и (3) термодинамическую температуру, законам Гей-Люссака можно придать более удобный вид: V=V0(1+αt)=V0[1+α(T-1/α)]=V0αT, p=p0(1+αt)=p0[1+α(p-1/α)]=p0αT, V1/V2 = p1/p2 при p=const, m=const p1/p2 = T1/T2 при V=const, m=const где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре. Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен 22,41•10–3 м3/моль. По определению, в одном моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро: NA=6,022•1023 моль-1 Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений p1, p2 ,..., рn входящих в нее газов: p = p1 + p2 + ...+ рn Парциальное давление — давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

37

Термодинамическая система

Термодинамическая система — это некая "физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой F"энергией и %BE"веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы "термодинамики.

Описание

Для описания термодинамической системы вводят так называемые B"термодинамические величины — набор "физических величин, значения которых определяют "термодинамическое состояние системы. Примерами термодинамических величин являются: "температура, "давление, %BC"объем, F"внутренняя энергия, F"энтропия, F"энтальпия, "свободная энергия Гельмгольца, "энергия Гиббса

Если термодинамическое состояние системы не меняется со F"временем, то говорят, что система находится в "состоянии равновесия. Строго говоря, термодинамические величины, приведённые выше, могут быть определены только в состоянии термодинамического равновесия.

Классификация

Термодинамические системы подразделяются на однородные по составу (например, "газ в сосуде) и неоднородные ("вода и %80"пар или смесь газов в сосуде).

Выделяют также "изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и %29"закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют %29"открытой.

Термодинамические системы

Термодинамическая система — это процесс или среда, которая используется при анализе передачи энергии. Термодинамическая система — это любая зона или пространство, ограниченное действительными или воображаемыми границами, выбранными для анализа энергии и ее преобразования. Границы термодинамической системы могут быть неподвижными или подвижными.

Газ в металлическом сосуде является примером системы с неподвижными границами. Если необходимо проанализировать газ в баллоне для /28/"хладагента, стенки сосуда — это неподвижные границы системы. Если необходимо проанализировать воздух в воздушном шаре, поверхность воздушного шара — подвижная граница. Если нагреть воздух в воздушном шаре, эластичные стенки шарика растягиваются, и граница системы меняется с расширением газа.

Пространство, смежное с границей системы, называется средой. У всех термодинамических систем есть среда, которая может являться источником /28/"теплоты или забирать ее. Среда может также проделать работу над системой или испытывать на себе работу системы.

Системы могут быть большими или маленькими, в зависимости от границ. Например, система может охватывать всю холодильную систему или газ в одном из цилиндров /28/"компрессора. Система может существовать в вакууме или может содержать несколько фаз одного или более веществ. Следовательно, действительные системы могут содержать сухой воздух и /28/"водяной пар (два вещества) или воду и водяной пар (две стадии одного и того же вещества). Однородная система состоит из одного вещества, одной его фазы или однородной смеси нескольких компонентов.

Системы бывают замкнутыми или открытыми. В замкнутой системе только энергия пересекает ее границы. Следовательно, теплота может переходить через границы замкнутой системы в среду или из среды в систему.

В открытой системе и энергия, и масса могут переходить из системы в среду и обратно. При анализе насосов и теплообменников необходима открытая система, так как жидкости должны пересекать границы при анализе. Если массовый расход открытой системы устойчивый и однородный, систему называют открытой системой с постоянным расходом. Массовый расход показывает, открыта система или закрыта.

Состояние термодинамической системы определяется физическими свойствами вещества. Температура, давление, объем, внутренняя энергия, /28/"энтальпия и энтропия — это свойства, определяющие состояние, при котором существует вещество. Так как состояние системы — это состояние равновесия, его можно определить, только когда свойства системы стабилизированы и больше не изменяются.

Другими словами, состояние системы можно описать, когда система находится в состоянии равновесия с окружающей средой.

38

Тепловой процесс

Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы.

Система, в которой идёт тепловой процесс, называется %BE"рабочим телом.

Тепловые процессы можно разделить на %81"равновесные и "неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются "равновесными состояниями.

Тепловые процессы можно разделить на %81"обратимые и %81"необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Можно выделить несколько простых, но широко распространённых на практике, тепловых процессов:

  • Адиабатный процесс — происходящий без теплообмена с окружающей средой;

  • Изохорный процесс — происходящий при постоянном объёме;

  • Изобарный процесс — происходящий при постоянном давлении;

  • Изотермический процесс — происходящий при постоянной температуре;

  • Изоэнтропийный процесс — происходящий при постоянной энтропии;

  • Изоэнтальпийный процесс — происходящий при постоянной энтальпии;

  • Политропный процесс — происходящий при постоянной теплоёмкости;

В технике важны %BB"круговые процессы (циклы), то есть повторяющиеся процессы, например, %BE"цикл Карно, "цикл Ренкина.

Теория тепловых процессов применяется для проектирования двигателей, холодильных установок, в химической промышленности, в метеорологии.

Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный

4.2.1.Изохорный процесс (v=const)

Такой процесс может совершаться рабочим телом, находящимся в цилиндре при неподвижном поршне, если к рабочему телу подводится теплота от источника теплоты (см. рис. 4.1) или отводится теплота от рабочего тела к холодильнику. При изохорном процессе выполняется условие dv=0 или v=const. Уравнение изохорного процесса получим из уравнения состояния идеального газа (см. &1.6) при v=const. В pv-координатах график процесса представляет собой прямую линию, параллельную оси p. Изохорный процесс может протекать с повышением давления (процесс 1-2) и с понижением (процесс 1-2’).

Запишем для точек 1 и 2 уравнения состояния: p1·v=R·T1; p2·v=R·T2. Следовательно, для изохорного процесса

(4.6)

Приращение внутренней энергии газа

(4.7)

Работа газа

так как dv=0.

Энтальпия газа iv=u+p·v, а div=du+d(p·v)=du+p·dv+v·dp=du+v·dp. Поэтому

(4.8)

Энтропия

То есть

(4.9)

4.2.2.Изобарный процесс (p=const)

В p-v координатах график процесса представляет собой прямую линию параллельную оси v (рис. 4.2). Изобарный процесс может протекать с увеличением объёма (процесс 1-2) и с уменьшением (процесс 1-2’). Запишем для точек 1 и 2 уравнения состояния: p·v1=R·T1; p·v2=R·T2.

Следовательно, для изобарного процесса

(4.10)

Приращение внутренней энергии газа Работа газа Так как p·v2=R·T2, а p·v1=R·T1, то l=R·(T2-T1). Следовательно, газовая постоянная имеет определённый физический смысл: это работа 1 кг газа в изобарном процессе при изменении температуры на один градус. Из выражения (4.3) следует, что в изобарном процессе q=cp·(T2-T1). В соответствии с первым законом термодинамики для изобарного процесса можно записать dq=du+p·dv= du+d(p·v)=di. Поэтому в изобарном процессе di=q=cp·(T2-T1). Из соотношений, характеризующих изобарный процесс, вытекает известное уравнение Майера. Так как dq=cp·dT=cv·dT+dl=cv·dT+R·dT, то R=cp-cv.

Используя выражение (4.5), можно показать, что в изобарном процессе энтропия газа

(4.11)

4.2.3.Изотермический процесс (T=const)

В p-v координатах график процесса изображается равнобокой гиперболой (рис. 4.3). Изотермический процесс может протекать как с увеличением объёма (процесс 1-2), так и с уменьшением объёма (процесс 1-2’).

p1·v1=R·T; p2·v2=R·T. Следовательно, для изотермического процесса p1·v1=p2·v2=const.

Приращение внутренней энергии газа

Работа газа

(4.12)

Теплота, подводимая в процессе

(4.13)

Изменение энтальпии газа Δi=Δu+Δ(p·v)=0.

Изменение энтропии газа

(4.14)