Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпоры.docx
Скачиваний:
24
Добавлен:
15.04.2019
Размер:
4.95 Mб
Скачать

4.2.4.Адиабатный процесс

Адиабатный процесс – это процесс, при котором рабочее тело не обменивается теплотой с окружающей средой (dq=0). Для получения графика процесса в p-v координатах выполним некоторые преобразования.

В соответствии с первым законом термодинамики dq=cv·dT+p·dv=c·dT, где с – теплоёмкость термодинамического процесса. Тогда можно записать, что

(4.15)

Продифференцируем уравнение состояния идеального газа и запишем

(4.16)

Так как R=cp-cv, то выражение (4.15) можно переписать с учётом (4.16) следующим образом:

(4.17)

Выполним преобразования выражения (4.17).

(4.18)

Разделим выражение (4.18) на (cv-c)·p·v и получим:

(4.19)

Обозначим , тогда

Следовательно

(4.20)

В адиабатном процессе dq=0, то есть c·dT=0. Поэтому c=0. Значит в адиабатном процессе . Эту величину принято обозначать буквой и называть показателем адиабаты.

Поэтому в p-v координатах адиабатный процесс изображается неравнобокой гиперболой vk·p=const (рис. 4.4). Так как k>1, то адиабата проходит круче гиперболы. Адиабатный процесс может протекать как с увеличением объёма (процесс 1-2), так и с уменьшением объёма (процесс 1-2’).

p1·v1k=p2·v2k, то , .

Приращение внутренней энергии газа  .

Так как , а , то , а . Поэтому

(4.21)

Работа газа в адиабатном процессе выполняется за счёт его внутренней энергии. Так как в адиабатном процессе отсутствует обмен теплотой с окружающей средой, то в соответствии с первым законом термодинамики имеем l+Δu=0 или l=-Δu. Поэтому

(4.22)

Изменение энтальпии газа в адиабатном процессе может быть определено исходя из следующих соображений:

Так как , то в итоге получим

(4.23)

Энтропия газа в адиабатном процессе не изменяется, так как dq=0. Поэтому в T-s координатах адиабатный процесс изображается прямой линией, параллельной оси температур.

4.2.5. Политропный процесс

Политропным процессом называется любой произвольный процесс изменения состояния рабочего тела, происходящий при постоянной теплоёмкости сп.

В политропном процессе dq=cп·dT.

Для получения графика политропного процесса в p-v координатах будем придерживаться тех же рассуждений, что и при получении графика адиабатного процесса. Заменим в соотношениях, полученных при изучении адиабатного процесса, обозначение теплоёмкости с на сп и обнаружим, что p·vn=const, а . В дальнейшем всё, что написано об адиабатном процессе, можно распространить на описание политропного процесса, заменяя в выражениях k на n.

Покажем, что адиабатный процесс делит все процессы на две группы: на процессы, в которых теплоёмкость больше нуля, и на процессы, в которых теплоёмкость меньше нуля.

Так как , то можно записать

                  ;     ;     ;     .

Из последнего выражения видно, что при n>k cп>0, а при k>n>1 cп<0.

В заключение отметим, что все рассмотренные ранее процессы – это частные случаи политропного процесса.

При n=k имеем адиабатный процесс.

При n=0 имеем р1·v102·v20, то есть изобарный процесс (p1=p2).

При n=1 имеем р1·v1= р2·v2, то есть изотермический процесс.

При n=∞ имеем или , что равносильно или , то есть изохорный процесс.

39

Термодинамические величины

Термодинамическими величинами называют физические величины, применяемые при описании состояний и процессов в термодинамических системах.

Термодинамика рассматривает эти величины как некоторые макроскопические параметры и функции, присущие системе, но не связанные с её микроскопическим устройством. Вопросы микроскопического устройства изучает "статистическая физика.

Функции состояния

Функции состояния зависят только от текущего состояния системы и не зависят от пути, по которому система пришла в это состояние.

Функции состояния в термодинамике включают:

  • температуру,

  • давление,

  • объём,

  • энтропию,

а также B"термодинамические потенциалы.

В зависимости от выбранной модели некоторые из этих величин, строго говоря, могут быть не функциями, а независимыми переменными.

Эти величины не являются независимыми. Связь между термодинамическими параметрами для конкретной системы называется F"уравнением состояния.

В случае, если известно каноническое уравнение состояния, задание любой пары параметров из следующих:

  • энтропия и объём,

  • энтропия и давление,

  • температура и объём,

  • температура и давление,

позволяет вычислить остальные два параметра.

Функции процесса

Функции процесса зависят не только от текущего состояния системы, но также и от пути, по которому система пришла в данное состояние.

Функции процесса в термодинамике включают:

  • количество теплоты и

  • термодинамическую работу.

Эти величины, однако, могут быть «превращены» в функции состояния с помощью C"интегрирующего множителя:

  • , где S (энтропия) — функция состояния.

  • PdV = δA, где P (давление) и V (объём) — функции состояния.

40

Идеальный газ

Идеальный газC"математическая модель "газа, в которой предполагается, что F"потенциальной энергией взаимодействия "молекул можно пренебречь по сравнению с их F"кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда %80"абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач "аэрогазодинамики. Например, %85"воздух при "атмосферном давлении и "комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или "давлений требуется применение более точной модели, например модели "газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются "статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками "Ферми — Дирака или "Бозе — Эйнштейна).

Классический идеальный газ

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • объём частицы газа равен нулю (то есть, диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними, );

  • импульс передается только при соударениях (то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях);

  • суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучения)

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия — сумме энергий частиц газа. Свойства идеального газа описываются "уравнением Менделеева — Клапейрона

где  — давление,  —%86"концентрация частиц,  —"постоянная Больцмана,  — абсолютная температура.

Для любого идеального газа справедливо "соотношение Майера:

где F"универсальная газовая постоянная, — молярная C"теплоемкость при постоянном давлении, — молярная теплоемкость при постоянном объёме.

Применение теории идеального газа

Физический смысл температуры газа

Так как давление молекул на стенку газа определяется по формуле , где - средняя кинетическая энергия поступательного движения молекул газа. Подставив это в уравнение Менделеева — Клапейрона получаем, что температура пропорциональна .

Распределение Больцмана

Равновесное распределение частиц классического идеального газа по состояниям следует из уравнения Менделеева — Клапейрона, из которого можно вывести распределение газа в поле потенциальной энергии. Это распределени приводит к "распределению Больцмана:

где  — среднее число частиц, находящихся в -ом состоянии с энергией εj, а константа определяется условием нормировки:

где  — полное число частиц.

Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми — Дирака и Бозе — Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем "Ферми-газа и "Бозе-газа.

Адиабатический процесс

C помощью модели идеального газа можно предсказать изменение параметров состояния газа при адиабатическом процессе. Перепишем уравнение в виде:

Продифференцировав обе части, получаем:

Затем, если подставить в это уравнение значение работы и внутренней энергии газа, "Уравнение Пуассона.

41

Уравнение состояния идеального газа

Уравнение состояния "идеального газа (иногда уравнение Клапейрона или уравнение C"Клапейрона%%87"Менделеева) — формула, устанавливающая зависимость между "давлением, %BC"молярным объёмом и "абсолютной температурой "идеального газа. Уравнение имеет вид:

где

  •  —"давление,

  •  —%BC"молярный объём,

  •  —F"универсальная газовая постоянная

  •  —"абсолютная температура, %BD"К.

Так как , где  —"количество вещества, а , где  — масса,  —"молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

 —"закон Бойля — Мариотта.

 —"Закон Гей-Люссака.

 — закон %80"Шарля (второй закон Гей-Люссака, 1808 г.)

С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём "водорода соединяется с 1 объёмом %80"хлора, при этом образуются 2 объёма "хлороводорода:

1 объём %82"азота соединяется с 3 объёмами "водорода с образованием 2 объёмов %BA"аммиака:

 —"закон Бойля — Мариотта.

Закон Бойля — Мариотта назван в честь ирландского физика, химика и философа %82"Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика %BC"Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в "газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p = (γ − 1)ρε,

где  —B"показатель адиабаты,  — внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких "давлениях поведение "газов отклоняется от закона Бойля — Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается.

42 Молекулярно-кинетическая теория

Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

  • все тела состоят из частиц: %BC"атомов, "молекул и %BD"ионов;

  • частицы находятся в непрерывном %81"хаотическом движении (тепловом);

  • частицы взаимодействуют друг с другом путём %80"абсолютно упругихHYPERLINK "http://ru.wikipedia.org/wiki/%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%BE_%D1%83%D0%BF%D1%80%D1%83%D0%B3%D0%B8%D0%B9_%D1%83%D0%B4%D0%B0%D1%80" столкновений.

Основными доказательствами этих положений считались:

  • Диффузия

  • Броуновское движение

  • Изменение "агрегатных состояний вещества

В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе —"физическая кинетика, и "статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

Основное уравнение МКТ

, где k является "постоянной Больцмана (отношение F"универсальной газовой постоянной R к %BE"числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры ("давление, %BC"объём, "температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Вывод основного уравнения МКТ

Пусть имеется кубический сосуд с ребром длиной l и одна частица массой m в нём.

Обозначим скорость движения vx, тогда перед столкновением со стенкой сосуда %81"импульс частицы равен mvx, а после — − mvx, поэтому стенке передается импульс p = 2mvx. Время, через которое частица сталкивается с одной и той же стенкой, равно .

Отсюда следует:

Так как давление , следовательно сила F = p * S

Подставив, получим:

Преобразовав:

Так как рассматривается кубический сосуд, то V = Sl

Отсюда:

.

Соответственно, и .

Таким образом, для большого числа частиц верно следующее: , аналогично для осей y и z.

Поскольку , то . Это следует из того, что все направления движения "молекул в хаотичной среде равновероятны.

Отсюда

или .

Пусть  — среднее значение кинетической энергии всех молекул, тогда:

, откуда .

Для одного моля выражение примет вид

Уравнение среднеквадратичной скорости молекулы

Уравнение среднеквадратичной скорости молекулы легко выводится из основного уравнения МКТ для одного моля газа.

, для 1 моля N = Na, где Na —%BE"постояннаяHYPERLINK "http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%90%D0%B2%D0%BE%D0%B3%D0%B0%D0%B4%D1%80%D0%BE" Авогадро

Nam = Mr, где Mr —"молярная масса "газа

Отсюда окончательно

43 расчёт скорости движения молекул.

Введение. Температура, как мера средней кинетической энергии молекул

Попробуем получить нетривиальные результаты, используя уравнение Клайперона-Менделеева и основное уравнение МКТ.

Введем понятие средней кинетической энергии молекул:

(1)

Преобразуем основное уравнение МКТ с учетом формулы (1):

т.е. основное уравнение МКТ запишем так (2)

Воспользуемся уравнением К.-М. в таком виде:

(3)

Сравним уравнения (2) и (3) и получим, что

или (4)

Как понимать формулу (4)?

Мы выяснили, что от температуры зависит величина средней кинетической энергии молекул. Поэтому говорят, что температура - мера средней кинетической энергии молекул. Это утверждение мы доказали на для идеального газа, но оказывается оно справедливо и для других агрегатных сосятояний вещества.

Среднеквадратичная скорость движения молекул.

Интересен вопрос о скорости движения молекул газа. В газен царит полный хаос, молекулы движутся по всем направлениям с самыми разными скоростями.

Оказывается, что

  • в газе есть молекулы с очень маленькими скоростями и с очень большими, но их сравнительно мало.

  • Средняя проекция скорости на любое направление для всего газа равна 0 (иначе, в газе существовали бы потоки).

  • Оказывается у молекул есть средняя скорость (по модулю), которая зависит от температуры, и основная часть молекул имеет модуль скорости близкий к ней. Эту скорость мы не можем вычислить, но можем легко посчитать среднеквадратичную скорость движения молекул газа, которая отличается от средней скорости коэффициентом порядка 1.

Определение. Среднеквадратичная скорость молекул равна квадратному корню из среднего квадрата скорости молекул:

(5)

Вычислим среднеквадратичную скорость из средней кинетической энергии молекул, которую мы легко можем сосчитать:

(6)

С учетом уравнения (4) получим:

(7)

Посчитаем, например, среднюю скорость молекул газа в классной комнате:

T=300K, mo=M/Na, М=0,029 г/моль. С учетом этого имеем:

 

44-2-raspredelenie-energii-po-stepenyam-svobody-molekuly/" Распределение энергии по степеням свободы молекулы

Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При исследовании движения тела необходимо знать его положение относительно выбранной системы координат. Для этого вводится понятие о степенях свободы тела. Число независимых координат, которые полностью определяют положение тела в пространстве, называется числом степеней свободы тела.

При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий).

Двухатомные жесткие молекулы, например молекулы водорода, азота и др., обладают пятью степенями свободы: они имеют 3 степени свободы поступательного движения и 2 степени свободы вращения вокруг осей ОХ и OZ. Вращением вокруг оси OY можно пренебречь, т.к. момент инерции ее относительно этой оси пренебрежимо мал. Поэтому вклад энергии вращательного движения вокруг оси OY в суммарную энергию двухатомной молекулы можно не учитывать.

Молекулы, состоящие из трех и более жестко связанных атомов, не лежащих на одной прямой, имеют число степеней свободы i = 6: три степени свободы поступательного движения и 3 степени свободы вращения вокруг осей ОХ, OY и OZ.

В этом случае, если расстояние между атомами может изменяться (нежесткие молекулы), появляются дополнительные степени свободы .

Согласно молекулярно-кинетической теории газов движение молекул носит беспорядочный характер; эта беспорядочность относится ко всем видам движения молекулы. Ни один из видов движения не имеет преимущества перед другим. При статистическом равновесии движений энергия в среднем распределяется равномерно между всеми видами движения. Закон равномерного распределения энергии по степеням свободы молекул можно сформулировать следующим образом: статистически в среднем на каждую степень свободы молекул приходится одинаковая энергия. Поступательное движение молекул характеризуется средней кинетической энергией, равной . Так как поступательному движению соответствует 3 степени свободы, то в среднем на одну степень свободы движения молекул приходится энергия

В однородном газе, молекулы которого имеют любое число степеней свободы i, каждая молекула в среднем обладает энергией движения, равной

(10.11)

45

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

c = Q / (mΔT).

  Во многих случаях удобно использовать молярную теплоемкость C:

C = M · c,

где M – молярная масса вещества.  Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом.

В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры. Такая неоднозначность определения теплоемкости характерна только для газообразного вещества.

При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе (p = const). В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

QV = CVΔT = ΔU.

  Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры. Для процесса при постоянном давлении первый закон термодинамики дает:

Qp = ΔU + p(V2 – V1) = CVΔT + pΔV,

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

  Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

pV = RT,

где R – универсальная газовая постоянная. При p = const

  Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера):

Cp = CV + R.

  Молярная теплоемкость Cp газа в процессе с постоянным давлением всегда больше молярной теплоемкости CV в процессе с постоянным объемом (рис. 3.10.1).

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

  В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9). Между двумя изотермами с температурами T1 и T2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T2 – T1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода.

Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. Теплоемкости Cp и CV – это лишь частные (и очень важные для теории газов) значения теплоемкостей. Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими.

Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому CT = ∞. В адиабатическом процессе ΔQ = 0, следовательно, Cад = 0. Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины.

Они достались современной науке в наследство от теории теплорода, господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Оно не может быть ни создано, ни уничтожено. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна.

Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело. Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты». В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T:

  Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро NА:

  При изменении температуры на ΔT внутренняя энергия изменяется на величину

  Коэффициент пропорциональности между ΔU и ΔT равен теплоемкости CV при постоянном давлении:

  Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать не только энергию поступательного движения, но и энергию вращательного движения молекул.

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X, Y, Z и два вращения относительно осей X и Y. Опыт показывает, что вращение относительно оси Z, на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах. При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула.

Каждое независимое движение называется степенью свободы. Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные). В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы: Если система молекул находится в тепловом равновесии при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна Из этой теоремы следует, что молярные теплоемкости газа Cp и CV и их отношение γ могут быть записаны в виде

где i – число степеней свободы газа.  Для газа, состоящего из одноатомных молекул (i = 3)

  Для газа, состоящего из двухатомных молекул (i = 5)

  Для газа, состоящего из многоатомных молекул (i = 6)

  Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле. Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле.

Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени.

При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT, а на один атом – 3kT. Внутренняя энергия 1 моля твердого вещества равна:

U = 3NAkT = 3RT.

  Поэтому молярная теплоемкость вещества в твердом состоянии равна:

C = 3R = 25,12 Дж/моль·К.

  Это соотношение называется законом Дюлонга–Пти. Для твердых тел практически не существует различия между Cp и CV из-за ничтожно малой работы при расширении или сжатии. Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R. Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением. Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.  

46

Распределение Максвелла

Распределение Ма́ксвеллаF"распределение вероятности, встречающееся в "физике и F"химии. Оно лежит в основании "кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая "давление и F"диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи "статистической механики (см. происхождение "статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования "упругих соударений над всеми другими процессами. Это верно, например, в физике "ионосферы и космической "плазмы, где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая F"де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и — "постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая "статистическая сумма.

47

Барометрическая формула

Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести.

Для "идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма F"ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

где p — давление газа в слое, расположенном на высоте h, p0 — давление на нулевом уровне (h = h0), M —"молярная масса газа, R —F"газовая постоянная, T —"абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

где m — масса молекулы газа, k —"постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. "Статистика Максвелла — Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. %82"Перрен в "1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT. Чем выше температура T, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m.

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе "барометрического нивелирования — метода определения разности высот Δh между двумя точками по измеряемому в этих точках давлению (p1 и p2). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: Δh = 18400(1 + at)lg(p1 / p2) (в м), где t — средняя температура слоя воздуха между точками измерения, a — температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1—0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

48

Закон Стефана — Больцмана

Закон Стефана — Больцмана — закон излучения %BE"абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную σ можно определить как

где  —"постоянная Планка, k — 0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0"постоянная Больцмана, c —"скорость света.

Численное значение Дж·с−1·м−2 · К−4.

Закон открыт независимо %84"Й. Стефаном и "Л. Больцманом в предположении пропорциональности плотности энергии излучения его давлению p = ρ / 3. В 1880 г. подтверждён %BE"Лео Гретцем.

Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по %80"спектру излучения описывается "формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется "законом Вина.

Применение закона к расчёту "эффективной температуры поверхности F"Земли даёт оценочное значение, равное 249 К или −24 °C.

49

Молекулы газа, находясь в хаотическом движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, называемым длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с очень большим числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул <l>. Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 1). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры). Так как за 1 с молекула в среднем проходит путь, который равен средней арифметической скорости <v>, и если < z > — среднее число столкновений, которые одна молекула газа делает за 1 с, то средняя длина свободного пробега будет Для определения < z > представим себе молекулу в виде шарика диаметром d, которая движется среди других как бы застывших молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри так называемого ломаного цилиндра радиусом d (рис. 2). Среднее число столкновений за 1 с равно числу молекул в объеме, так называемого ломаного цилиндра: где n — концентрация молекул, V = πd2<v> ,где <v> — средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений Расчеты показывают, что при учете движения других молекул Тогда средняя длина свободного пробега т. е. <l> обратно пропорциональна концентрации n молекул. С другой стороны, p=nkt. Значит,

50

Теплопроводность

Теплопрово́дность — это перенос F"тепловой энергии структурными частицами вещества ("молекулами, %BC"атомами, %BD"ионами) в процессе их теплового движения. Такой теплообмен может происходить в любых %29"телах с неоднородным распределением "температур, но механизм переноса теплоты будет зависеть от "агрегатного состояния %BE"вещества. Явление теплопроводности заключается в том, что F"кинетическая энергия %BC"атомов и "молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного %BE"вещества проводить F"тепло.

Численная характеристика теплопроводности материала равна "количеству теплоты, проходящей через материал толщиной 1 %80"м и площадью 1 %80"кв.м за единицу времени (секунду) при разности температур на двух противоположных поверхностях в 1 %BD"К. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача F"тепловой энергии связана с перетеканием "теплорода от одного тела к другому. Однако более %BD"поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к "термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна %82"градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности %84"Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани "параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в %82"Вт/(%80"м·%BD"K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности %BC"вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью "излучения. Поэтому, например, для уменьшения теплопотери стенки %81"термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности K с C"удельной электрической проводимостью σ в металлах устанавливает "закон Видемана — Франца:

где k —"постояннаяHYPERLINK "http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0" Больцмана, e — заряд %BD"электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у "водорода, минимальная — у %BD"радона, из не радиоактивных газов - у %BD"ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в "ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение %BA"ультразвука, "ударные волны и т.п. Инерционность в уравнения переноса первым ввел %BA"МаксвеллHYPERLINK "http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C", а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).

51

Диффузия

Диффузия %BA"лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против "градиента концентрации)

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль "диффузия частиц играет в B"физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом F"материи, однако иногда диффузионными называют также другие "процессы переноса: C"теплопроводность, "вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае %BB"металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия "молекул в общем случае протекает ещё медленнее. Например, если кусочек %80"сахара опустить на дно стакана с "водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если C"медь покрыть %BE"золотом, то будет происходить диффузия золота в медь, но при нормальных условиях ("комнатная температура и "атмосферное давление) золотосодержащий слой достигнет толщины в несколько %BD"микронов только через несколько тысяч лет.

Общее описание

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности "концентраций, температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется C"теплопроводность, в случае потока электрических зарядов — C"электропроводность. Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок ("ЭЛТ) применяется металлический "торий, продиффундировавший через металлический %BC"вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение %BF"изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов 29"урана (отделение 235U от основной массы 238U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост F"энтропии. При постоянных давлении и температуре в роли такого потенциала выступает %BB"химический потенциал µ, обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

J ~

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J [cm − 2s − 1] пропорциональна коэффициенту диффузии D [(cm2s − 1)] и градиенту концентрации. Это уравнение выражает первый закон Фика ("Адольф Фик — немецкий физиолог, установивший законы диффузии в 1855 г.). Второй закон Фика связывает пространственное и временное изменения концентрации ("уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой "уравнение Аррениуса.

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает "стационарное состояние. В этом случае диффузионные процессы описываются нелинейным "уравнением Фоккера—Планка. Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;

  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения температуры во времени, а в правой части уравнения — вторая частная производная, которая выражает пространственное распределение температур, в частности, выпуклость функции распределения температур, проецируемую на ось х.

52

Внутреннее трение

Явление внутреннего трения с макроскопической точки зрения связано с возникновением сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев.

Рассмотрим известный опыт Ньютона. Пусть имеются две параллельные пластинки (рис. 1), между которыми находится газ (жидкость).

Расстояние между пластинками h. Нижнюю пластинку будем удерживать неподвижно, верхнюю заставим двигаться в одном и том же направлении в своей плоскости с постоянной скоростью u0.

Слой газа, непосредственно прилегающий к верхней пластинке, будет иметь ту же скорость u0, что и пластинка, слой же газа, прилегающий к нижней пластинке, находится в покое. Как показывает опыт, любой промежуточный слой движется со скоростью u, пропорциональной расстоянию x от неподвижной пластинки, т. е.

(3.3.1)

Постоянная a определяется из условия, что при x = h u = u0, т. е. u0 = ah. Откуда a = u0/h. Тогда выражение (3.3.1) примет вид

(3.3.2)

Таким образом, к верхней пластинке приложена сила F1, лежащая в ее плоскости и имеющая то же направление, что и направление движения пластинки. Так как пластинка движется с постоянной скоростью u0, то на пластинку должна действовать такая же по величине, но противоположно направленная сила F со стороны газа, которую назовем силой вязкого трения.

Из опыта следует, что абсолютная величина силы F1 пропорциональна скорости u0, с которой мы двигаем пластинку, и площади пластины, т. е.

(3.3.3)

где – постоянный коэффициент пропорциональности, который называют коэффициентом вязкого трения. Учитывая, что сила вязкого трения , равенство (3.3.3) перепишем в виде

(3.3.4)

Так как из (3.3.2) следует, что , то последнее выражение можно представить так:

(3.3.5)

Это закон внутреннего вязкого трения Ньютона, который установил его экспериментально. Закон утверждает: при стационарном (ламинарном) движении слоев жидкости или газа с различными скоростями между ними возникают касательные силы, пропорциональные градиенту скорости слоев и площади их соприкосновения. Физический смысл коэффициента вязкости заключается в том, что он численно равен силе, действующей на единицу площади поверхности, параллельной скорости течения газа или жидкости, при градиенте скорости .

Согласно второму закону Ньютона, , где K – импульс элементарной массы слоя газа. Поэтому (3.3.5) можно представить в виде бесконечно малых:

(3.3.6)

Пусть изменение скорости движения газа или жидкости происходит в направлении оси X, а сама скорость течения направлена перпендикулярно этой оси (рис. 2).

Тогда закон Ньютона (3.3.6) утверждает: импульс, переносимый за время dt через площадку dS, перпендикулярной оси X, пропорционален времени dt, величине площадки dS и градиенту скорости . Знак “минус” означает, что импульс переносится в направлении уменьшения скорости слоя.

С молекулярно-кинетической точки зрения причиной внутреннего трения является наложение упорядоченного движения слоев газа с различными гидродинамическими скоростями u и хаотического теплового движения молекул. В результате теплового движения, молекулы из более быстрого слоя переносят с собой больший упорядоченный импульс и, сталкиваясь, передают его молекулам более медленно движущегося слоя, вследствие чего он увеличивает скорость. Наоборот, при переходе молекул из медленно движущегося слоя в более быстрый слой, они приносят в него меньший упорядоченный импульс, что приводит к уменьшению упорядоченной скорости этого слоя. Увеличение или уменьшение гидродинамической скорости слоя газа, согласно второму закону динамики, свидетельствует о наличии силы внутреннего трения, действующей между слоями. Следовательно, за счет теплового хаотического движения скорости слоев будут выравниваться, если, конечно, внешними силами не поддерживать разности скоростей слоев.

Таким образом, с точки зрения молекулярно-кинетической теории в процесс внутреннего трения каждая молекула переносит упорядоченный импульс , вызывая тем самым изменение импульса слоя. Подставляя в общее уравнение переноса (4.4.7) и , получим:

(3.3.7)

Сравнивая последнее соотношение с (3.3.6), получим формулу для коэффициента вязкости газов:

(3.3.8)

Из формулы (3.3.8) видно, что коэффициент вязкости газов, как и коэффициент теплопроводности, не зависит от давления. Опыт подтверждает этот вывод. Отклонения наблюдаются при очень низких и очень высоких давлениях, когда начинает зависеть от давления. Зависимость от температуры такая же, как для коэффициента теплопроводности.

Наиболее точные методы измерения коэффициента вязкости основаны на формуле Пуазейля:

(3.3.9)

где V – объем газа, протекшего за время t через капилляр радиуса r и длины l при разности давлений на его концах. Измерив в опыте все указанные величины, из формулы Пуазейля находят коэффициент вязкости .

53

Вакуум

Ва́куум (от %BA"лат. vacuum —"пустота) — среда, содержащая газ при "давлениях значительно ниже "атмосферного. Вакуум характеризуется соотношением между "длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками "вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (λ/d 1), средний (λ/d~1) и высокий (λ/d 1) вакуум.

Следует различать понятия физического вакуума и технического вакуума.

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 "Торр) говорят о достижении низкого вакуума (λ < < l) (1016 молекул на 1см³). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют %BC"форвакуум. При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ/d>>1 молекулы газа уже почти не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10−5 Торр) (1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 Торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием %BF"сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10−16 Торр и ниже (1 молекула на 1 см³).

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются %81"вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются %29"геттеры. Более широкий термин "вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной "температуре всегда имеется некоторое "тепловое излучение (газ %BD"фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое "массы пространство. Даже если бы удалось получить это состояние на практике, оно не было бы %BE"абсолютной пустотой. F"Квантовая теория поля утверждает, что, в согласии с "принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают B"виртуальные частицы: происходят так называемые F"нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий).

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, "эффект КазимираHYPERLINK "http://ru.wikipedia.org/wiki/%D0%92%D0%B0%D0%BA%D1%83%D1%83%D0%BC" и "лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями "электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых %BC"ложных вакуумов) является одной из главных основ "инфляционной теории "Большого взрыва.

54 По способу передачи энергии , вещества и информации между

рассматриваемой системы и окружающей средой термодинамические системы классифицируются :

1. Замкнутая (изолированная) система - это система в которой нет

обмена с внешними телами ни энергией, ни веществом (в том числе и

излучением), ни информацией .

2. Закрытая система - система в которой есть обмен только с энергией .

3. Адиабатно изолированная система - это система в которой есть обмен

энергией только в форме теплоты .

4. Открытая система - это система, которая обменивается и энергией, и

веществом, и информацией.