Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория физика.doc
Скачиваний:
45
Добавлен:
23.04.2019
Размер:
3.77 Mб
Скачать
  1. Расчетные формулы

Виды волн

Основное свойство всех волн – перенос частицами среды энергии без переноса вещества.

Различают продольные и поперечные волны.

Волны, в которых частицы среды колеблются вдоль их распространения, называются продольными.

Волны, в которых частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны, называются поперечными.

Продольные волны распространяются в жидкостях и газах

В твердой среде возникают как продольные, так и поперечные

вынужденные электрические колебания. Резонанс напряжений и токов

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.

Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.

Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δt. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

Рассмотрим последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1): e (t) = 0 cos ωt,

где 0 – амплитуда, ω – круговая частота.

Рисунок 2.3.1.

Вынужденные колебания в контуре

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:

Величина – это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности.

Уравнение вынужденных колебаний можно записать в виде uR + uC + uL = e (t) = 0 cos ωt,

где uR (t), uC (t) и uL (t) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами UR, UC и UL. При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм.

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Рисунок 2.3.2.Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме

Длины векторов на диаграмме равны амплитудам A и B колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом Δφ = φ1 – φ2. Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору с емкостью C и катушки с индуктивностью L. Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника ? может оказаться равной угловой частоте ?0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ?0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ?0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление XL равно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?( R2 + [?0L - 1/(?0C)]2 ) = R

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xс становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений UL и Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ?0, при которой имеют место условия резонанса, определяется из равенства ?oL = 1/(?0С).

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Отсюда имеем

?o = 1/?(LC) (74)

Если плавно изменять угловую частоту ? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ?o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ?oL = 1/(?oC). Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части

цепи при резонансе I=U?(G2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ?0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

Рис. 197. Зависимость тока I и полного сопротивления Z от ? для последовательной (а) и параллельной (б) цепей переменного тока

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту ?о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты ?0.

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах. Колебательный контур — важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Вынужденные колебания. Резонанс

Вынужденные колебания – совершаютсяв колебательных системах под действием внешней периодической силы, меняющейся по гармоническому закону:

f0 – амплитуда вынужденной силы

- частота вынужденной силы

Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы.

Резонанс – явление резкого возрастания амплитуды при частоте вынужденных колебаний близкой к собственной.

-резонансная частота

свободные затухающие электрические колебания

свободные затухающие колебания – колебания, у которых амплитуды из-за потерь энергии колебательной системой с течением времени убывают. Простейшим механизмом убывания энергии колебаний есть ее превращение в теплоту вследствие трения в механических колебательных системах, а также потерь, связанных с выделением теплоты, и излучения электромагнитной энергии в электрических колебательных системах.

Вид закономерностей затухания колебаний задается свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, параметры которых, определяющие физические свойства системы, в ходе процесса остаются неизменными. Например, линейными системами являются пружинный маятник при малых растяжениях пружины (когда выполняется закон Гука), колебательный контур, у которого сопротивление, индуктивность и емкость не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются аналогичными линейными дифференциальными уравнениями, что дает основания подходить к изучению колебаний различной физической природы с единой точки зрения, а также моделировать их, в том числе и на ЭВМ.

Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как

(1)

где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (1) запишем в виде

(2)

где u=u(t). После взятия первой и второй производных (2) и подстановки их в выражение (1) найдем

(3)

Решение уравнения (3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай положителньного коэффициента:

(4)

(если (ω02 - σ2)>0, то такое обозначение мы вправе сделать). Тогда получим выражение , у которого решение будет функция . Значит, решение уравнения (1) в случае малых затуханий (ω02 >> σ2 )

(5)

где

(6)

— амплитуда затухающих колебаний, а А0 — начальная амплитуда. Выражение (5) представлено графики рис. 1 сплошной линией, а (6) — штриховыми линиями. Промежуток времени τ = 1/σ, в течение которого амплитуда затухающих колебаний становится мешьше в е раз, называется временем релаксации.

Рис.1

Затухание не дает колебаниям быть периодичными и, строго говоря, к ним нельзя применять понятие периода или частоты. Но если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 1). В этом случае период затухающих колебаний с учетом выражения (4) будет равен

Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение

называется декрементом затухания, а его логарифм

(7)

— логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы.

Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна

(8)

(так как затухание мало (ω02 >> σ2 ), то T принято равным Т0).

Из формулы (8) вытекает, что добротность пропорциональна числу колебаний Ne, которые система совершает за время релаксации.

Выводы и уравнения, полученные для свободных затухающих колебаний линейных систем, можно использовать для колебаний различной физической природы — механических (в качестве примера возьмем пружинный маятник) и электромагнитных (в качестве примера возьмем электрический колебательный контур).

свободные гармонические колебания в колебательном контуре

Среди исследований различных электрических явлений особое место занимают исследования электромагнитных колебаний. При колебательном процессе электрические физические величины (заряды, токи) периодически изменяются и процесс сопровождается взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний применяется колебательный контур — цепь, которая состоит из последовательно включенных резистора сопротивлением R, катушки индуктивностью L, и конденсатора емкостью С.

Исследуем последовательные стадии колебательного процесса в идеализированном контуре, у которого сопротивление пренебрежимо мало (R≈0). Для возбуждения колебаний в контуре конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Следовательно, в начальный момент времени t=0 (рис. 1а) между обкладками конденсатора появится электрическое поле, энергия которого равна Q2/(2C) . Если конденсатор замкнуть на катушку индуктивности, то он начнет разряжаться, и в контуре начнет течь возрастающий со временем ток I. В результате энергия электрического поля будет падать, а энергия магнитного поля катушки (она равна (1/2)LI2 ) - увеличиваться.

Так как R≈0, то, используя закон сохранения энергии, полная энергия

поскольку полная энергия на нагревание не тратится. Поэтому в момент t=(1/4)T, когда конденсатор полностью разрядится, энергия электрического поля станет равной нулю, а энергия магнитного поля (а следовательно, и ток) достигает максимального значения (рис. 1б). Далее, начиная с этого момента ток в контуре будет уменьшаться; значит, начнет уменьшаться магнитное поле катушки, и в ней индуцируется ток, который течет (по правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Далее, начнет перезаряжаться конденсатор, появится электрическое поле, которое будет стремиться ослабить ток, который в конце концов станет равным нулю, а заряд на обкладках конденсатора станет максимальным (рис. 1в). Далее те же процессы будут протекать в обратном направлении (рис. 1г) и к моменту времени t=Т система придет в первоначальное состояние (рис. 1а). После этого рассмотренный цикл разрядки и зарядки конденсатора будет повторяться. Если бы в контуре потерь энергии не было, то совершались бы периодические незатухающие колебания, т.е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, сила тока I, текущего через катушку индуктивности и напряжение U на конденсаторе . Значит, в контуре появляются электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.

С электрическими колебаниями в колебательном контуре можно провести аналогию с механическими колебаниями маятника (рис. 1 внизу), которые сопровождаются взаимными превращениями кинетической и потенциальной энергий маятника (на рисунке Е - кинетическая энергия, П - потенцияльная). В данном случае энергия электрического поля конденсатора Q2/(2C) аналогична потенциальной энергии маятника, энергия магнитного поля катушки (LQ2/2) — кинетической энергии, сила тока в контуре — скорости движения маятника. Индуктивность L аналогична массе m, а сопротивление контура — силе трения, которая действуюет на маятник.

По закону Ома, для контура, который содержит резистор сопротивлением R, катушку индуктивностью L, и конденсатор емкостью С

где IR—напряжение на резисторе, UC = Q/C - напряжение на конденсаторе, ξs = -L(dI/dt) – э.д.с. самоиндукции, которая возникает в катушке при протекании в ней переменного тока (ξs – единственная э.д.с. в контуре). Значит,

(1)

Разделив формулу (1) на L и подставив и получим дифференциальное уравнение колебаний заряда Q в контуре:

(2)

В рассматриваемом колебательном контуре внешние э.д.с. отсутствуют, значит колебания в контуре представляют собой свободные колебания. Если сопротивление R=0, то свободные электромагнитные колебания в контуре будут гармоническими. Тогда из (2) найдем дифференциальное уравнение свободных гармонических колебаний заряда в контуре:

Из формулы (1) следует, что заряд Q гармонически колеблеься по закону

(3)

где Qm — амплитуда колебаний заряда конденсатора с циклической частотой ω0, которая называется собственной частотой контура, т. е.

(4)

и периодом

(5)

Выражение (5) впервые было получено У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре

(6)

где Im = ω0Qm — амплитуда силы тока. Напряжение на конденсаторе равно

(7)

где Um=Qm/C - амплитуда напряжения.

Из формул (3) и (6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на π/2, т.е., когда ток равен максимальному значению, заряд (а также и напряжение (7)) обращается в нуль, и наоборот.

Затухающие колебания. Коэффициент затухания, логарифмический декрементзатухания, добротность

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Закон затухания колебаний зависит от свойств колебательной системы. Система называется линейной, если параметры, характеризующие существенные в рассматриваемом процессе физические свойства системы, не изменяются в ходе процесса. Свободные затухающие колебания линейной системы описываются уравнением:

, (7.1.1)

где - коэффициент затухания, - собственная частота системы, т.е. частота, с которой совершались бы колебания в отсутствии затухания. Выражение коэффициента затухания через параметры системы зависит от вида колебательной системы. Например, для пружинного маятника где r - коэффициент сопротивления, т.е. коэффициент пропорциональности между скоростью и силой сопротивления. Для затухающих колебаний в колебательном контуре (рис.7.1.1): , где R - величина активного сопротивления контура.

Для решения уравнения (7.1.1) производится подстановка . Эта подстановка приводит к характеристическому уравнению:

(7.1.2)

которое имеет два корня:

, (7.1.3)

При не слишком большом затухании (при ) подкоренное выражение будет отрицательным. Если его представить в виде , где - вещественная положительная величина, называемая циклической частотой затухающих колебаний и равная , то корни уравнения (3) запишутся в виде:

и . (7.1.4)

Общим решением уравнения (7.1.1) будет функция:

(7.1.5)

которую можно представить в виде:

, (7.1.6)

Здесь и - произвольные постоянные.

В соответствии с (7.1.6) движение системы можно условно рассматривать как гармоническое колебание частоты w с амплитудой, изменяющейся по закону:

. (7.1.7)

Скорость затухания колебаний определяется коэффициентом затухания . В соответствии с выражением (7.1.7) коэффициент затухания обратен по величине тому промежутку времени, за который амплитуда колебаний уменьшается в «e»=2.718 раз. Период затухающих колебаний определяется формулой:

. (7.1.8)

При незначительном затухании ( ) период колебаний практически равен . С ростом период увеличивается. Из соотношения (7.1.7) следует, что . Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания: (7.1.9)

Логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в «e» раз. Помимо рассмотренных величин для характеристики колебательной системы употребляется величина , называемая добротностью колебательной системы. Добротность пропорциональна числу колебаний, совершаемых системой за то время, за которое амплитуда колебаний уменьшается в «e» раз. Большим значениям добротности соответствует малое затухание. Энергия колебательной системы убывает со временем. Это обусловлено наличием затухания. При малом затухании, когда энергия изменяется по закону:

(7.1.10)

где - значение энергии в начальный момент.

Можно показать, что при слабом затухании добротность с точностью до множителя 2p равна отношению энергии, запасенной в системе в данный момент времени, к убыли этой энергии за один период колебаний.

С ростом g период колебаний увеличивается . При период обращается в бесконечность, т.е. движение перестает быть периодическим. При выведенная из положения равновесия система возвращается в него, не совершая колебаний.

свободные гармонические колебания.амплитуда .период, частота , фаза колебаний. скорость и ускорение. энергия гармонических колебаний

Гармонические колебания - периодический процесс, в котором рассматриваемый параметр изменяется по гармоническому закону. Если на колебательную систему не действуют внешние переменные силы, то такие колебания называются свободными. Рассмотрим массу, которая колеблется на пружине как показано на рисунке. Если амплитуда колебаний мала, то координата x массы по вертикальной оси изменяется по гармоническому закону:

x= Asin(wt + j)

где A - амплитуда колебаний, t - время, j - фаза колебаний, w - угловая частота колебаний, w = 2pf = 2p /T, f - частота колебаний, T - период колебаний.

Далее мы найдём период колебаний T пружинного маятника, состоящего из грузика массой m и пружины жёсткостью k. Если грузик смещён из нулевого положения (в котором пружина не деформирована) на расстояние x, то на грузик со стороны пружины будет действовать сила -kx. Помимо этого на грузик действует сила тяжести mg. Согласно второму закону Ньютона, сумма всех сил, приложенных к грузику, равна ma, где a - ускорение. Таким образом, мы можем записать дифференциальное уравнение для пружинного маятника:

md2x/dt2 = -kx + mg

где g- ускорение свободного падения в гравитационном поле,d2x/dt2 - вторая производная координаты x по времени t. Это уравнение имеет следующее решение:

x = Asin[(k/m)1/2t + j] + mg/k

Мы можем видеть из этой формулы, что период колебаний равен

T = 2p(m/k)1/2

и, соответственно, угловая частота w равна

w = (k/m)1/2

Амплитуда колебаний A и фаза колебаний j зависят от начальных условий (в момент времени t=0): начального смещение грузика x0 и начальной скорости v0. В состоянии равновесия пружина растянута на величину mg/k.

Предположим, что колеблющийся грузик связан с пером, который рисует линию на бумажной ленте. Если лента движется равномерно в горизонтальном направлении, то перо будет рисовать на ней синусоиду. Зная скорость движения ленты и период синусоиды, мы можем вычислить период колебаний грузика на пружине.

В общем случае на осциллятор действует сила трения, пропорциональная скорости движения грузика: F=av. В случае пружинного маятника эта сила возникает из-за сопротивления воздуха и неупругих свойств самого материала, из которых изготовлена пружина. В результате, амплитуда колебаний будет со временем уменьшаться. Уравнение свободного гармонического осциллятора с затуханием может быть записано следующим образом:

m(d2x/dt2) + a (dx/dt) + kx = mg

где a - коэффициент трения. Это уравнение может быть переписано в виде

d2x/dt2+ 2g(dx/dt) + W2x = g

где 2g = a / m; W2=k /m

В случае, когда W2 > g2 уравнение колебаний свободного гармонического осциллятора с затуханием имеет следующее решение:

x = Ae-gtcos(wt + j )

При этом период колебаний зависит от коэффициента затухания g :

T = 2p/w= 2p/(W2 -g2)1/2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]