Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Статика и кинематика.doc
Скачиваний:
7
Добавлен:
10.08.2019
Размер:
6.19 Mб
Скачать

Плоское движение твёрдого тела.

Движение твердого тела называемся плоским или плоскопараллельным, если все точки тела перемещаются в плоскостях, параллельных некоторой неподвижной плоскости.

Рассмотрим произвольное плоское движение твердого тела. Пусть все точки тела перемещаются в плоскостях, параллельных плоскости .

Из определенен плоского движения и из свойств твердого тела (углы между прямыми, фиксированными в твердом теле, сохраняются неизменными) следует, что любая прямая АВ проведенная в теле перпендикулярно плоскости , будет перемещаться поступательно, то есть траектории, скорости, ускорения всех точек этой прямой будут одинаковы.

Таким образом, для определения движения тела необходимо знать движение лишь одной точки на каждой прямой, проведенной перпендикулярно плоскости . Взяв точки в одной плоскости параллельной плоскости , мы можем утверждать, что плоское движение твердого тела вполне определяется движением плоской фигуры, полученной от пересечения тела любой плоскостью, параллельной плоскости .

Итак, задание движения тела сводится к заданию движения одного его сечения. Поэтому будем изображать только плоскую фигуру – сечение тела и изучать движение точек этого сечения в его плоскости.

Свяжем жестко с плоской фигурой систему координат . Тогда положение системы , а вместе с ней и плоской фигуры относительно будет определено заданием координат ХА, YА точки А и углом между осями АХ2 и АХ (оси АХ2 и АХ соответственно параллельны осям ОХ1 и. OY1 и перемещаются при движении плоской фигуры поступательно).

Такал образом, три функции

ФОРМУЛА определяют положение плоской фигуры в любой момент времени, то есть это уравнение движения плоской фигуры*

Скорости точек тела при плоском движении.

I способ

Теорема.

Скорость любой точки плоской фигуры равна геометрической суше скорости точки принятой за полюс и скорости данной точки при вращении плоской фигуры вокруг полюса.

Доказательство:

Рассмотрим плоскую фигуру. Точку А примем за полюс. Вычислим скорость точки В.

Радиус-вектор определяет положение точки В относительно OX1Y1.

Радиус-вектор определяет положение точки А относительно OX1Y1.

Радиус-вектор определяет положение точки В относительно AX2Y2.

Очевидно

Продифференцируем по времени обе части записанного равенства

(*)

Заметим, что – скорость точки В относительно подвижной системы координат AX2Y2. Введем обозначение

(17)

Движение тела относительно AX2Y2 представляет собой вращение тела вокруг оси AZ2 перпендикулярной плоскости чертежа. Таким образом, – это скорость точки В при вращении тела вокруг оси, проходящей через полюс А, то есть с учетом формулы Эйлера и равенство (*) принимает вид

(18)

Модуль скорости определяется следующим образом;

При этом вектор перпендикулярен .

II способ

Теорема

Проекции скоростей двух точек плоской фигуры на прямую, их соединяющую – равны.

Доказательство:

Пусть скорость точки А известна – . Согласно предыдущей теореме для скорости точки В имеем . Спроектируем обе части этого равенства на ось Х. , , так как оси То есть

(19)

Мгновенный центр скоростей (МЦС)

МЦС называется точка плоской фигуры, скорость которой в, данный момент времени равна нулю.

Теорема

Если угловая скорость плоской фигуры не равна нулю, то МЦС существует.

Доказательство:

Пусть скорость точки. А не равна нулю, . Вычислим скорость точки Р, отстоящей от точки А на расстоянии , причем .

Согласно I способу . Так как то , причем . Вектор направлен противоположно , то есть можно записать

.

Определение скорости точки плоской фигуры с помощью МЦС