Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы электротехники и линейные цепи_УП_Ч1_2.doc
Скачиваний:
26
Добавлен:
17.09.2019
Размер:
1.69 Mб
Скачать
      1. Четырехполюсники с интегральными операционными усилителями

Интегральный операционный усилитель (ОУ) представляет собой электронный блок с очень большим входным (R ВХ  106 Ом) и малым выходным (R ВЫХ  0,1 Ом) сопротивлениями, имеющий высокий (0 = 104  106) коэффициент усиления по напряжению. В последнее время ОУ широко используются для реализации управляемых источников, а также в ЭВМ и устройствах автоматики для выполнения различных математических операций (суммирование, дифференцирование, интегрирование и т.п.). На рис. 4.11, а показано условное обозначение ОУ, а на рис. 4.11, б - его схема

а б

Рис. 4.11

замещения в линейном режиме. Вход, обозначенный знаком минус, называют инвертирующим, а знаком плюс - неинвертирующим. Сигнал, поданный на инвертирующий вход, усиливается по величине и меняет свою полярность (фазу). Неинвертирующий вход полярность (фазу) сигнала не изменяет. Сигнал может быть подан одновременно на оба входа, тогда при расчетах учитывается их сумма (разность): . Эту величину называют дифференциальным входным сигналом ОУ.

В линейном режиме ОУ работает, как правило, при наличии отрицательной обратной связи (ОС). Обратной связью называют подачу некоторой части выходного сигнала на входные зажимы, как показано на рис. 4.12, а.

а б

Рис. 4.12

Сопротивление , связывающее входные и выходные зажимы оу, называют сопротивлением обратной связи.

За счет отрицательной ОС напряжение усиливаемого сигнала уменьшается на величину сигнала обратной связи. При этом коэффициент усиления снижается и его можно регулировать. Усилитель с отрицательной ОС работает стабильно.

При анализе электронных цепей с ОУ их можно представлять, как показано в 4.5.2, совокупностью простых (канонических) Т- и П- образных четырехполюсников с последующим определением матрицы всей цепи. Однако на практике проще произвести расчет по уравнениям Кирхгофа или по методу узловых потенциалов, заменяя реальный ОУ идеальным.

Идеальному ОУ приписывают следующие свойства:

1. Напряжение между входными зажимами ОУ равно нулю.

2. Входные токи ОУ (обоих входов) равны нулю (RВХ  ).

3. Коэффициент усиления ОУ 0   (RВЫХ = 0).

Такая идеализация не изменяет результатов расчета, поскольку реальный ОУ практически удовлетворяет свойствам ИНУН с матрицей

.

Нижеприведенные примеры подтверждают сказанное.

ПРИМЕР 4.10. Показать, что коэффициент передачи по напряжению цепи с ОУ по рис. 4.12, а не зависит от коэффициента усиления ОУ с потерями. Параметры Z 1 и Z 2 , а также RВХ и RВЫХ, полагать известными.

РЕШЕНИЕ. С учетом схемы замещения ОУ (линейный режим) исходная схема преобразуется в схему, представленную на рис. 4.12, б. По методу узловых потенциалов для узлов 0 и 2 имеем:

;

,

где Z H - сопротивление нагрузки.

Обозначая ,

и решая относительно U 2 , получаем:

.

В реальных усилительных каскадах , поэтому

.

Таким образом, коэффициент передачи цепи по напряжению не зависит ни от 0 , ни от внутренних параметров ОУ и, следовательно, ОУ в расчетах можно принимать идеальным.

ПРИМЕР 4.10. Определить коэффициент передачи по напряжению цепи по рис. 4.13 с идеальным ОУ. Параметры цепи Z 1 и Z 2 полагать известными.

Рис. 4.13

РЕШЕНИЕ. Поскольку ОУ - идеальный, напряжение на его входных зажимах принимаем равным нулю. Тогда по второму закону Кирхгофа будем иметь:

.

Решая относительно , находим:

.

ПРИМЕР 4.12. Для четырехполюсника по рис. 4.14 составить матрицу (А), полагая параметры R1 и R2 известными, а ОУ - идеальным.

Рис. 4.14

РЕШЕНИЕ. Согласно второму закону Кирхгофа, для входного и выходного контуров имеем:

;

.

Поскольку входное напряжение идеального ОУ в линейном режиме равно нулю, следует положить .

Тогда и .

Таким образом,

.

ПРИМЕР 4.13. Определить входное сопротивление цепи по рис. 4.15, полагая сопротивления R1, R2 и Z H известными, а ОУ - идеальным.

Рис. 4.15

РЕШЕНИЕ. На основании второго закона Кирхгофа записываем:

и .

Поскольку ОУ - идеальный, U0 = 0 и, следовательно,

; .

Учитывая и ,

получаем: ,

и, наконец, .

ЗАМЕЧАНИЕ. Данная цепь представляет собой конвертор отрицательных сопротивлений (КОС), преобразующий параметры подключенных элементов подобно идеальному трансформатору.