Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Компьютерная схемотехника.rtf
Скачиваний:
49
Добавлен:
21.09.2019
Размер:
46.11 Mб
Скачать

3.4 Базисные логические функции

Любую логическую функцию можно представить совокупностью элементарных логических функций: дизъюнкцией, конъюнкцией, инверсией или их суперпозицией. Набор элементарных функций ИЛИ, И, НЕ называют функционально полным или базисным (базисом). Кроме того существуют еще два базиса: И-НЕ; ИЛИ-НЕ.

3.5 Принцип двойственности булевой алгебры

Если в выражении F8=А В конъюнкцию заменить на дизъюнкцию и проинвертировать обе переменные, то результат окажется инверсией прежнего значения функции . Аналогично, если в выражении F14=А В дизъюнкцию заменить на конъюнкцию и проинвертировать обе переменные, то результат окажется инверсией прежнего значения функции .

Указанные свойства логических функций отражают принцип двойственности булевой алгебры.

3.6 Основные тождества булевой алгебры

А+0=А;А+1=1;

А+А=А;А+ =1;

А*0=0;А*1=А;

А*А=А;А* =0; =А.

3.7 Основные законы и теоремы булевой алгебры

3.7.1 Законы

Переместительный (свойство коммутативности): А+В=В+А; А*В=В*А.

Сочетательный (свойство ассоциативности): (А+В)+С=А+(В+С); (А*В)*С=А*(В*С).

Распределительный (свойство дистрибутивности): А*(В+С)=А*В+А*С; А+В*С=(А+В)*(А+С).

3.7.2 Теоремы

Поглощения: А+А*В=А; А*(А+В)=А.

Склеивания:

Де Моргана. Существует две формы записи теоремы де Моргана:

Форма 1: (3.1.1)

Форма 2: (3.1.2)

Последние два выражения вытекают из принципа двойственности булевой алгебры (раздел 3.5).

Теорема без названия. Существует еще одна теорема без названия, которую представим следующим образом:

(3.1.3)

Два полезных соотношения:

(3.1.4)

3.8 Совершенная дизъюнктивная нормальная форма (сднф) записи булевых выражений

СДНФ является одной из аналитических форм представления переключательных функций. Булевы выражения простых логических функций можно записать по их словесному описанию. В общем случае для получения аналитической формы (булевого выражения) используют таблицы истинности.

Предположим, логическая функция трех переменных задана таблицей истинности (таблица 3.4).

Таблица 3.4

№набора

С

В

А

F

0

0

0

0

0

1

0

0

1

1

2

0

1

0

0

3

0

1

1

0

4

1

0

0

1

5

1

0

1

1

6

1

1

0

1

7

1

1

1

0

Эта функция имеет четыре конституенты единицы К1, К4, К5 и К6 (коституента единицы – это единичное значение ПФ на одном конкретном наборе. Всего для ПФ трех переменных может быть восемь конституент единицы, если функция принимает единичное значение на всех наборах). Конституента единицы записывается в виде конъюнкции. Для нашего примера ; .

Булево выражение ПФ в СДНФ представляет сумму конституент единицы:

.(3.2)

Поскольку конституенты единицы записываются в виде конъюнкций, то СДНФ представляет сумму конъюнкций, каждая из которых содержит все переменные в прямом или инверсном виде не более одного раза. Очевидно, что логическая функция имеет единственное булево выражение в СДНФ, что следует из методики его получения.

СДНФ называется дизъюнктивной (состоит из суммы конъюнкций), совершенной (все конъюнкции содержат по одному разу каждую переменную в прямом или инверсном виде) и нормальной (двухуровневой) – для ее реализации требуются логические элементы двух видов: конъюнкторы и дизъюнкторы, при этом предполагается, что исходные переменные поступают в прямом и инверсном виде.