Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5.Колебания.doc
Скачиваний:
9
Добавлен:
25.09.2019
Размер:
1.44 Mб
Скачать

Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях вдоль осей и . Такой случай возникает, например, если на управляющие вертикальные и горизонтальные пластины осциллографа подать периодические гармонические сигналы. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю ( = 21 = ). Тогда уравнения колебаний будут иметь вид:

;

;

Для нахождения уравнения траектории результирующего колебания исключим из уравнений параметр :

;

Преобразуем второе уравнение и распишем его через косинус суммы.

Перепишем последнее уравнение следующим образом и возведём левую и правую части в квадрат.

Перепишем.

Преобразуем.

И окончательно запишем.

(1)

Или в общем виде.

Это есть уравнение эллипса, оси которого ориентированы произвольно относительно осей x и y.

Исследуем уравнение (1) и выясним форму кривых, определяемых этим уравнением.

а) Пусть разность фаз , Из (1) при этом следует

При четных получается

, или ,

При нечетных получается .

П ервому из полученных уравнений соответствует прямая 1 – 2 на рисунке, второму уравнению – прямая 3 – 4.

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний с одинаковыми начальными фазами и частотами колебания будут происходить вдоль прямой, проходящей через начало координат.

А мплитуда результирующего колебания в обоих случаях будет равна.

б) Пусть разность фаз будет любой, кроме уже рассмотренных значений. Тогда уравнением траектории будет выражение (1). Это уравнение эллипса. Таким образом, точка, участвующая в двух взаимно перпендикулярных колебаниях с одинаковой частотой, движется по эллиптической траектории, соответствующим образом ориентированной по отношению к выбранной системе координат. Параметры траектории определяются соотношением амплитуд и разностью фаз исходных колебаний. Пример: если , , то уравнение (1) преобразуется к виду

.

Это так называемое каноническое уравнение эллипса с полуосями A и B. На рисунке стрелками показано направление движения точки вдоль траектории при и . Полуоси эллипса равны соответствующим амплитудам колебаний. Это случай эллиптически поляризованных колебаний.

При эллипс вырождается в окружность. Это циркулярно поляризованные колебания.

Все остальные разности фаз дают эллипсы с различным углом наклона относительно осей координат.

Если частоты взаимно перпендикулярных колебаний неодинаковы, то траектория результирующего движения может иметь вид сложных кривых, называемых фигурами Лиссажу. Пример: Пусть отношение частот взаимно перпендикулярных колебаний равно 1:2 и разность фаз . Уравнения колебаний имеют вид:

,

Результирующее колебание показано на рисунке. Траектория вырождается в незамкнутую кривую, по которой точка движется туда и обратно. Это одна из простейших фигур Лиссажу. Возможно, на лабораторном практикуме Вы будете выполнять эту лабораторную работу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]