Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_Biologia.doc
Скачиваний:
1794
Добавлен:
14.02.2015
Размер:
821.76 Кб
Скачать

1.Поверхностный аппарат клетки.–является универсальной субсистемой,имеется у всех клеток.Поверхностный.аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой.

В составе поверхностного аппарата клетки выделяют 3 компонента:1.Плазматическую мембрану,2.Надмембранный комплекс,3. Субмембранный.

Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран.

Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой.

В состав надмембранного комплекса включают:

1. Углеводные части гликолипидов и гликопротеидов

2. Периферические мембранные белки.

3. Интегральные и полуинтегральные белки.

4. Специфические углеводы.

5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему.

Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система.

 Опорно-сократительная система состоит из: микрофибрилл; скелетных фибрилл, или промежуточных филаментов; микротрубочек

Микрофиблиллы - нитивидные структуры.

Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки.

Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток. Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами.

2.Барьерно-транспортная функция поверхностного аппарата клетки.

Обмен веществ между клеткой и средой определяется транспортной функцией ПАК. В своей деятельности клетка использует несколько видов транспорта молекул и веществ через ПАК:

  1. Свободный транспорт, или простая диффузия.

  1. Пассивный транспорт, или облегченная диффузия

  1. Активный транспорт

  2. Транспорт в мембранной упаковке или цитоз.

Свободный транспорт – осуществляется только при наличии электрического градиента по обе стороны мембраны. Величина градиента определяет направление и скорость свободного транспорта. Через билипидный слой могут проходить любые гидрофобные молекулы. Большинство биологически активных молекул являются гидрофильными, поэтому их свободный транспорт через билипидный слой затруднен.

Пассивный транспорт – облегченная диффузия – также осуществляется только по градиенту концентраций и без затрат АТФ. Скорость пассивного транспорта намного больше, чем свободного. При увеличении разности концентраций наступает момент, когда скорость становится постоянной. Транспорт осуществляется специальными молекулами – переносчиками. С их помощью через мембрану по градиенту концентрации транспортируются крупные гидрофильные молекулы (сахара, аминокислоты). В ПАК имеются пассивные переносчики для различных ионов (К+, Na+, Ca2+, Cl-, HCO3-).

Особенностью пассивных переносчиков является их высокая специфичность (избирательность) по отношению к транспортируемым молекулам. Вторая особенность – высокая скорость транспорта, которая может составлять 104 молекул в секунду и более.

Активный транспорт – характеризуется переносом молекул против градиента концентрации, т.е. из области с низкой концентрацией молекул в область с более высокой концентрацией молекул. Для этого необходимы затраты АТФ. Работу по переносу молекул против градиента концентрации осуществляют специальные молекулы – переносчики. Такие молекулы получили название “насосы”, или “помпы”. Многие активные переносчики обладают АТФ-азной активностью: способны расщеплять АТФ и получать энергию для своей работы.

Активный транспорт ионов необходим клеткам для создания соответствующих градиентов ионов.

Цитоз или транспорт в мембранной упаковке используется клеткой для транспорта крупных молекул или частиц различных веществ. Этот вид транспорта характеризуется тем, что транспортируемая частица оказывается окруженной (упакованной) мембранным пузырьком. Если цитоз происходит в клетку его называют эндоцитозом. Цитоз из клетки обозначают как экзоцитоз. Для некоторых клеток характерен цитоз, при котором частицы проходят через нее. Такой вид цитоза получил название диацитоз, или трансцитоз.

3.Рецепторно-сигнальная функция пак

В ПАК имеются специальные молекулы – рецепторы, которые воспринимают (узнают) физические и химические сигналы. Рецепторами являются интегральные белки или гликопротеины и имеют общую сходную структуру. В надмембранной области (гликокаликс) наружный домен рецептора, который взаимодействует с сигналом (химической молекулой). Этот домен переходит в трансмембранный домен, который находится в билипидном слое (пересекает его). Третий, цитоплазматический домен, локализуется в периферической гиалоплазме. Транспортный домен служит для фиксации рецептора в плазмолемме и передачи сигнала путем изменения своей конформации. Эта модификация вызывает цепь последовательных реакций, в результате которых клетка реагирует на полученный сигнал. Наружный домен рецептора может быть гликозилирован, т.е. иметь олигосахаридный компонент. Он используется для рецепции сигнала.

Наружный домен рецептора имеет уникальную структуру и взаимодействует только с определенными молекулами-сигналами. В результате рецепторная функция является высокоспецифичной. Взаимодействие сигнала со специфическим рецептором клетка может использовать для регуляции транспортной функции. У многоклеточных животных в качестве специфических сигналов широко используются гормоны, нейромедиаторы и иммуномедиаторы. Нейромедиатор ацетилхолин взаимодействует со своими рецепторами, в результате чего открываются каналы для K+ и Na+ в ПАК нервных клеток. Гормон инсулин усиливает работу переносчиков глюкозы. Активацию рецепторов может индуцировать эндоцитоз. Половой гормон тестостерон проникает в билипидный слой и взаимодействует со специальными рецептором. Образовавшийся комплекс транспортируется в ядро и индуцирует работу генов, которые контролируют развитие мужских половых признаков. Гормоны и медиаторы часто являются первичными сигнальными посредниками передачи информации. В этом случае активация рецептора приводит к активации фермента аденилатциклазы. Она превращает АТФ в циклическую форму АМФ (цАМФ). Циклическая АМФ способна активировать другие регуляторные белки или ферменты. В результате этого в клетке происходят определенные изменения, вызывающие адекватную реакцию клетки.

Нарушение рецепторной функции ПАК является причиной определенных болезней изменение структуры и функции рецепторов инсулина приводит к тому, что не включается переносчик глюкозы в жировых и мышечных клетках в результате развивается инсулинозависимая форма сахарного диабета. Нарушение структуры рецептора тестостерона у людей с набором хромосом XY вызывает болезнь тестикулярную феминизацию (синдром Морриса).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]