Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_Biologia.doc
Скачиваний:
1796
Добавлен:
14.02.2015
Размер:
821.76 Кб
Скачать

30..Регуляция действия генов на постгранскрипционном уровне

Регуляция на уровне процессинга РНК обеспечивает возможность образования различных типов зрелой, функционально активной мРНК. Процессинг РНК регулируется с помощью рибозимов (катализаторов рибонуклеиновой природы) и ферментов матураз.

Одной из форм сплайсинга является альтернативный сплайсинг, при котором одному участку ДНК и одному первичному транскрипту (пре-мРНК) может соответствовать несколько типов зрелой мРНК и, соответственно, несколько изотипов (т.е. разных форм) одного и того же белка, например, мышечного белка тропонина. Твердо установлено, что некоторые генетические заболевания человека (фенилкетонурия, некоторые гемоглобинопатии) обусловлены нарушением сплайсинга.

Сплайсинг РНК открыт сравнительно недавно, поэтому достоверных данных по регуляции активности генов на этом уровне недостаточно. Наиболее подробно изучена регуляция генов, контролирующих усвоение галактозы у дрожжей. Показано, что эти системы регуляции действуют как на уровне транскрипции, так и на посттранскрипционном уровне. При этом осуществляется многоступенчатая, или каскадная, регуляция, в которой участвуют элементы позитивного и негативного контроля, последовательно регулирующие активность друг друга.

31.Медицинские аспекты регуляции действия генов.

32.Репарация днк.

Два типа нарушений структуры ДНК приводят к мутациям. Это, во-первых, включение нормальных нуклеотидов в аномальное окружение из последовательностей нуклеотидов, приводящих к образованию неправильно спаренных оснований и петель разных размеров. Во-вторых, появление повреждений ДНК в виде аномальных нуклеотидов в правильных последовательностях ДНК. В этом случае речь идет о различных химических модификациях нуклеотидов, включая их разрушение и образование поперечных сшивок. Повреждения ДНК могут приводить к задержке и блокированию репликации и транскрипции.

При исследовании механизмов репарации ДНК важные результаты были получены на клетках, облученных УФ-светом с длинами волн 240-280 нм. УФ-облучение клеток часто сопровождается их гибелью, образованием мутаций и злокачественной трансформацией. Среди первичных повреждений наиболее часто встречаются биспиримидиновые фотопродукты: пиримидиновые димеры циклобутанового типа, соединенные связью 6-4 ( рис. I.56 ). Как про-, так и эукариоты имеют несколько ферментных систем, которые разделяют пиримидиновые димеры или восстанавливают исходную структуру азотистых оснований. К таким репаративным системам относится, прежде всего, система эксцизионной репарации ДНК (NER) , осуществляющая вырезание поврежденных нуклеотидов ( NER - nucleotide excision repair ) или азотистых оснований ( BER - base excision repair ). Система ферментативной фотореактивации ДНК ( PHR - photoreactivation ), основным компонентом которой является ДНК- фотолиаза, разделяет пиримидиновые димеры, превращая их в нормальные пиримидиновые основания. Кроме того, поврежденные УФ- светом молекулы ДНК могут репарироваться с участием систем рекомбинации и в процессе пострепликативного синтеза ДНК. Действие систем репарации поврежденной ДНК распространяется не только на фотопродукты, но и на другие модифицированные основания, образующиеся под действием химических мутагенов. Отдельно следует упомянуть систему, распознающую неправильно спаренные основания в двойной спирали ДНК, возникающие в результате ошибок репликации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]