Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

техника транспорта обслуживание и ремонт

.pdf
Скачиваний:
40
Добавлен:
02.04.2015
Размер:
6.68 Mб
Скачать

Система смазки работает следующим образом. Масло из поддона насосом через сетчатый фильтр маслозаборника подаѐтся его секциями в двух направлениях. Основная секция насоса нагнетает масло по каналам в блоке цилиндров в ФГО, из которого поступает в центральный масляный канал. Часть масла (не более 10 %) по отдельной магистрали подаѐтся к ФТО, очищается в нѐм

исливается в поддон двигателя. Из центрального масляного канала масло нагнетается к коренным подшипникам коленчатого вала и опорам распределительного вала. По сверлениям в коленчатом вале масло поступает к шатунным подшипникам и далее по сверлению в шатуне к верхней его головке.

От переднего подшипника распределительного вала при совпадении каналов в шейке вала и в опоре масло подаѐтся в полую ось толкателей и далее к подшипникам толкателей. По сверлениям в теле толкателей масло поступает к сферическим поверхностям штанг и через полости в них – к подшипникам коромысел и клапанов. Отработавшее масло стекает в поддон двигателя.

Радиаторная секция насоса нагнетает масло в радиатор, в котором охлаждается

исливается в поддон. Через радиатор проходит до 20 % общего количества масла, подаваемого насосом.

Вентиляция картера принудительная (приточно – вытяжная), осуществляется путѐм отсоса газов из картера во впускной трубопровод. Количество газов, отсасываемых из картера, регулируется клапаном, установленном на пути движения газов и зависит от режима работы двигателя. На режиме холостого хода из-за большого разрежения во впускном трубопроводе клапан вентиляции приподнимается, уменьшая площадь проходного сечения штуцера, - во впускной трубопровод отсасывается сравнительно небольшое количество газов.

При работе под нагрузкой, разрежение во впускном трубопроводе уменьшается, клапан под собственным весом опускается, проходное сечение увеличивается, обеспечивая проход большого количества газов, прорывающихся в картер двигателя. Перед клапаном картерные газы проходят через маслоуловитель, предотвращающий попадание масла вместе с газами в камеру сгорания. Свежий воздух поступает в картер через фильтр, установленный на маслозаливном патрубке.

1.8. Система питания бензиновых двигателей

Назначение системы питания – очистка топлива и воздуха. Приготовление горючей смеси, подводе к цилиндрам двигателя и отвод из них отработавших газов.

В карбюраторном двигателе бензин засасывается насосом из бака и по топливопроводу подаѐтся через фильтр в карбюратор, где распыливается и смешивается с воздухом, поступающим через воздушный фильтр. Полученная смесь поступает в цилиндр.

Трудность образования бензовоздушной однородной смеси заключается в том, что соотношение объемов компонентов (полностью испаренного бензина и воздуха) составляет 1:50. При равных объемах смешиваемых компонентов,

31

например воздуха и метана, для сжигания которого необходимо лишь в 9 раз больше количества воздуха по объему, получить однородную смесь легче.

В зависимости от типа двигателя различают внешнее смесеобразование следующих видов:

-карбюрацию,

-впрыск легкого топлива во впускной трубопровод, осуществленный либо непрерывной подачей топлива во впускной трубопровод перед цилиндром, либо порциями - когда открыт впускной клапан,

– форкамерно-факельное,

–газовое.

Карбюрацией называют процесс приготовления горючей смеси. Этот процесс включает в себя: движение воздуха через карбюратор и по впускному тракту, топлива по каналам в карбюраторе, топливные жиклеры (приспособления с отверстиями, дозирующими расход топлива), истечение топлива или смеси через распылители, распыливание топлива в воздушном потоке, испарение и перемешивание с воздухом. На карбюрацию влияют следующие факторы:

время - на приготовление горючей смеси отводятся сотые доли секунды,

температура смеси - при возрастании температуры смеси интенсивность испарения топлива увеличивается, что улучшает качество смесеобразования.

Растет i ,

конструктивные схемы и качество обработки элементов системы и камеры сгорания определяют возможность равномерного распределения смеси и получения однородного состава по цилиндрам на разных режимах,

качество топлива. Повышение содержание в бензине легких фракций обуславливает высокое содержание паров в смеси,

режимы работы двигателя.

Основной причиной недостатков карбюраторных систем питания является то, что по впускному трубопроводу, соединяющему карбюратор и цилиндры, поступает уже приготовленная ТВС. Пока она поступит в цилиндры, ее состав изменится (за счет того, что часть бензина осядет на стенках впускного трубопровода). Поскольку в большинстве случаев длина впускных трубопроводов от карбюратора к цилиндрам разная, состав смеси в отдельных цилиндрах будет неодинаков. Устранить эту причину недостатков можно, если ТВС приготовлять непосредственно около каждого цилиндра. При отсутствии карбюратора впускной трубопровод можно оптимально сконструировать, благодаря чему достигается лучшее наполнение цилиндров, что приводит к более благоприятной характеристике крутящего момента двигателя.

При впрыске бензина не требуется устанавливать диффузоры во впускном тракте, и поэтому гидравлическое сопротивление системы впуска значительно меньше, чем в случае применения карбюратора, что повышает наполнение цилиндра двигателя и его мощностные показатели. Этому способствует отсутствие необходимости подогрева впускного тракта.

32

В двигателях с впрыском бензина достигается большая однородность состава смеси в отдельных цилиндрах, вследствие более точной дозировки топлива, подаваемого в каждый цилиндр. Имеется возможность использования топлив с несколько меньшим (на 2…3 единицы) октановым числом, а также более тяжелых топлив (благодаря принудительному распыливанию). К достоинствам впрыска в цилиндр относятся независимость протекания процесса смесеобразования от положения двигателя, надежный и быстрый пуск при низких температурах.

При впрыске топлива в результате более равномерного по сравнению с карбюраторным смесеобразованием распределение состава смеси по цилиндрам уменьшается количество токсичных компонентов в ОГ.

Впрыскивающие топливные системы делятся:

по месту подвода топлива,

по способу подачи топлива (периодическое или непрерывное),

по типу узлов, дозирующих топливо (плунжерными насосами, дозирующими распределителями клапанного типа или золотникового, дозирующими форсунками с электромагнитным или электронным управлением, с регулируемым давлением топлива), по способу регулирования количества смеси (пневматическим, механическим, электронным),

-по основным параметрам регулирования (разрежению во впускной системе, углу поворота дросселя, часовому расходу топлива),

-по величине давления впрыска (низкое 400…500 кПа, высокое 1000…1500 кПа). Одной из причин, ограничивающих широкое применение впрыска легкого топлива, является сложность регулирования его подачи в зависимости от режима работы двигателя. Впрыск топлива обеспечивается двумя системами:

– подачи топлива - в нее входят топливный насос, фильтры, редукционный клапан, форсунки, арматура;

- регулирования подачи топлива, к которой относятся устройства (механические или электронные), определяющие количество впрыскиваемого топлива за цикл или при непрерывном впрыске за единицу времени, такие как сигналы датчиков частоты вращения, разрежения на впуске, нагрузки, температуры и другие, которые обрабатываются в компьютере, определяющего режим впрыска и управления им.

Карбюратор

Карбюратор - это прибор, с помощью которого осуществляется процесс карбюрации. Карбюратор должен автоматически обеспечивать нужное изменение состава смеси при изменении режима работы двигателя.

Карбюраторы по конструкции делятся на одно- и многокамерные, с падающим, восходящим и горизонтальным потоком. Принцип действия поплавкового карбюратора в следующем.

33

Воздух

1 5

3

2

ТВС в цилиндр

Рис. 12. Схема карбюратора

При движении поршня двигателя в ходе через открытый впускной клапан засасывается горючая смесь. Воздух при этом проходит в цилиндр через главный воздушный клапан карбюратора и впускной трубопровод двигателя (рис.23).

Вглавном воздушном канале помещается диффузор и дроссельная заслонка. Диффузор карбюратора при заданных расходах воздуха и при минимальных потерях давления за карбюратором должен создавать разрежения и скорости воздуха в горловине у топливных форсунок, достаточные для распыления топлива. Дроссельная заслонка служит для регулирования количества смеси, засасываемой двигателем. С ее помощью производится регулирование мощности двигателя. Дроссельной заслонкой изменяют сопротивление впускной системы двигателя путем изменения проходных сечений главного воздушного канала карбюратора.

С прикрытием дросселя возрастают потери давления на впуске и разрежение во впускной трубе, что уменьшает плотность воздуха, весовой заряд и мощность двигателя. Существуют три типа дроссельных заслонок: задвижка, кран и заслонка крыльчатого типа.

Внаиболее узкой части диффузора располагается топливная форсунка или распылитель. Сужение потока в горловине диффузора вызывает увеличение скорости воздуха. На создание этой скорости затрачивается часть статического напора, создавая разрежение. Топливо из бензобака с помощью бензонасоса

подается в поплавковую камеру карбюратора 1. Под действием разрежения

34

подсасывается через жиклер 2 и распылитель 3, распыливаясь по выходе из нее. Уровень топлива в поплавковой камере поддерживается на постоянном уровне при помощи поплавкового механизма 5.

При работе карбюратора уровень топлива и, следовательно, поплавок несколько опускаются, запорная игла пропускает нужное количество топлива в карбюратор. При неработающем карбюраторе уровень топлива повышается, и игла запирает доступ топлива. С изменением количества всасываемого воздуха изменяется разрежение в диффузоре и подача топлива через жиклер.

Жиклер - это калиброванный насадок, который регулирует состав топлива, подаваемого карбюратором. Чем большая часть топлива испаряется, тем лучше сгорает рабочая смесь. Поэтому, для улучшения испарения топлива, применяются подогрев воздуха, входящего в карбюратор, и подогрев стенок впускной трубы.

Карбюратор не может на всех режимах работы дать смесь нужного состава, поэтому карбюраторы имеют более сложные конструкции. В современных карбюраторах обогащение смеси при работе двигателя с полностью открытой дроссельной заслонкой достигается установкой экономайзера. Экономайзер - это обогатитель горючей смеси, он изменяет (обогащает) состав смеси при переходе от режима с максимальной экономичностью к режиму максимальной мощности. Экономайзеры включаются либо в главную дозирующую систему, либо работают самостоятельно. Включение и выключение экономайзеров осуществляется посредством механического или пневматического привода.

Ускорительные насосы служат для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки. Они позволяют получить экономичную регулировку карбюратора и обеспечивают хорошую приемистость двигателя. Привод ускорительного насоса может быть механическим и пневматическим. Как самостоятельное приспособление ускорительные насосы объединяют с экономайзером.

Многокамерные карбюраторы применяются в форсированных двигателях, имеющих четыре и более цилиндров для повышения мощности и улучшения динамических качеств двигателя.

Применение многокамерных карбюраторов - одно из перспективных направлений совершенствования карбюрации. В двухкамерных карбюраторах первичная камера обеспечивает работу двигателя на ХХ, при малых и средних нагрузках; вторичная камера включается в работу при переходе к полным нагрузкам, когда в первичной камере карбюратора образуется недостаточное количество смеси. В четырехкамерных карбюраторах имеются две первичные и две вторичные камеры, которые работают синхронно.

Включение в работу вторичных камер сопровождается обеднением смеси, так как при открытии дроссельной заслонки вторичной камеры происходит перераспределение расхода воздуха между камерами. Оно сопровождается обеднением смеси в первичной камере, потому что часть потока воздуха ответвляется во вторичную, а во вторичной камере разрежение оказывается недостаточным для необходимого обогащения смеси. Дроссельные заслонки вторичных камер у большинства конструкций

35

многокамерных карбюраторов начинают открываться, когда заслонки первичных камер открыты на 40…50°. Обеднение смеси, происходящее при включении в работу вторичных камер, необходимо компенсировать дополнительной подачей топлива.

Впрыск легкого топлива во впускной трубопровод

Имеется пять типов систем впрыска топлива бензиновых двигателей:

центральная, периодически впрыскивающая топливо - Моно-Джетроник;

непрерывно впрыскивающая топливо - механическая, К-Джетроник;

периодически впрыскивающая топливо - L-Джетроник;

- комбинированная система управления впрыском топлива и зажиганием - Монотроник.

Система впрыска Моно-Джетроник

Представленная на рис. 13 система представляет собой электронноуправляемую систему впрыска, в которой топливо впрыскивается во впускной трубопровод электромагнитной форсункой, расположенной перед дроссельной заслонкой. Распределение топливовоздушной смеси по цилиндрам происходит, как и в случае применения карбюратора - через впускной трубопровод.

Систему можно разделить на три подсистемы:

подачи топлива;

определения рабочего режима;

обработки данных.

Рис. 13. Система впрыска Моно-Джетроник

36

1 - топливный бак; 2 - насос; 3 - фильтр; 4 - регулятор давления; 5 форсунка; 6 модуль впрыска; 7 - блок управления; 8 - термоавтомат управления дроссельной заслонкой; 9- датчик положения дроссельной заслонки; 10- лямбда-зонд; 11 - датчик температуры двигателя; 12 - прерыватель-распределитель; 13 - аккумуляторная батарея; 14- выключатель зажигания; 15 реле.

Топливо подается из бака 1 насосом 2 через фильтр З к центральному модулю впрыска. Он располагается перед дроссельной заслонкой и состоит из регулятора давления 4 и форсунки 5.

Подсистема определения рабочего режима включает в себя датчики, установленные на двигателе и посылающие электрические сигналы в блок управления. Датчик положения дроссельной заслонки посылает в блок управления сигнал, соответствующий углу поворота дроссельной заслонки. Датчик представляет собой потенциометр. На основании этого сигнала рассчитывается количество топлива, необходимое двигателю на данном рабочем режиме. Во всем диапазоне частичных нагрузок система впрыска должна приготовлять ТВС одинакового состава (на 14,7 кг воздуха - 1 кг топлива - стехиометрический состав).

Блок управления по сигналам с датчика распознает конечные положения дроссельной заслонки. Когда дроссельная заслонка закрыта, ТВС обогащается (увеличивается подача топлива) на режиме ХХ или прекращается и возобновляется подача топлива на режиме принудительного ХХ. Когда дроссельная заслонка полностью открыта, ТВС обогащается на режиме полной мощности. С помощью блока управления определяется масса воздуха, поступившего в двигатель. При повышении температуры окружающей среды она уменьшается, при понижении - увеличивается. Таким образом, если не использовать сигнал описываемого датчика для коррекции рассчитанного количества топлива, при повышении температуры будет приготовляться обогащенная смесь, при понижении - обедненная.

Обработка данных происходит в цифровом блоке управления. На основании полученного значения из памяти данных выбирается величина расхода топлива с учетом режима работы двигателя. Она, в свою очередь, корректируется в зависимости от температуры двигателя. По полученному значению рассчитывается командный импульс для форсунки. Рассчитываются время открытия форсунки, время открытого состояния ее и время закрытия форсунки. Если требуется обогатить смесь, форсунка открывается на более длительное время, если обеднить - на более короткое. Импульсы выдаются на форсунку с частотой искрообразования в системе зажигания.

1.9. Система питания дизельного двигателя

Система питания дизеля обеспечивает подачу очищенного дизельного топлива к цилиндрам, сжимает его до высокого давления, подаѐт его в мелко

37

распыленном виде в камеру сгорания и смешивает с горячим от сжатия в цилиндрах воздухом так, чтобы оно самовоспламенилось.

Дизельное топливо отличается от бензина более высокой плотностью, смазывающей способностью и более низкой теплотворной способностью.

Существует два варианта смесеобразования в дизелях, обусловленных формой камеры сгорания. В первом варианте топливо впрыскивается в предкамеру, а во втором варианте впрыск топлива осуществляется непосредственно в камеру сгорания, выполненную в поршне.

Основными элементами топливоподающей системы являются: топливоподкачивающий насос низкого давления, фильтры грубой и тонкой очистки, топливный насос высокого давления (ТНВД), форсунка, трубопроводы низкого и высокого давления.

Наиболее важными элементами топливоподающей системы являются ТНВД и форсунка. ТНВД служит для непосредственного впрыска топлива в цилиндр двигателя и должен обеспечить:

-точное дозирование цикловой подачи топлива в соответствии с нагрузкой;

-создание необходимого давления впрыска для качественного распыливания топлива;

-подачу дозы топлива за определѐнный небольшой промежуток времени и в определѐнной фазе рабочего процесса;

-получение оптимального закона впрыска для заданных условий распыливания и сгорания топлива;

-возможность регулирования начала подачи топлива в функции от числа оборотов;

-одинаковые условия впрыска для всех цилиндров как в отношении количества подаваемого топлива, так и фаз распределения.

Топливоподающие системы делятся на системы:

-непосредственного впрыскивания;

-с аккумуляторным впрыском;

-ступенчатого впрыска и др.

По роду привода ТНВД выполняются с приводом:

-механическим кулачным от распределительного вала или от топливного

вала;

-газовым от газового толкателя;

-пружинным;

-электронным.

По способу регулирования количества подаваемого топлива:

-клапанов;

-плунжера-золотника;

-переменного хода плунжера;

-дозировки наполнения и др.

ТНВД по конструктивному исполнению бывают столбикового типа и блочные. В автомобилестроении в большинстве используются ТНВД блочного типа. ТНДВ блочного типа представляет собой устройство с вращающимся

38

кулачковым валом, имеющим один выступ, который воздействует на плунжерные пары, расположенные внутри корпуса, число которых соответствует числу цилиндров двигателя. Механические устройства ( в последнее время электронные), встроенные в насос, регулируют момент впрыска, поворачивая вперѐди назад кулачковый вал, и подачу топлива, с помощью отсечных клапанов, сбрасывающих давление, когда впрыснуто достаточное количество топлива.

Плунжерная пара представляет собой поршень (плунжер) и цилиндр (втулка) небольшого размера. Во втулке на разном уровне просверлены два отверстия. Через впускное топливо поступает, а через выпускное топливо отводится. Плунжерные пары располагаются в корпусе ТНВД, в котором имеются каналы для подвода и отвода топлива. Каждый плунжер на боковой поверхности имеет спиральную канавку – отсечную кромку. В нижней части корпуса ТНВД установлен кулачковый вал, который приводится от коленчатого вала двигателя. При движении плунжера вверх он сначала закрывает выпускное отверстие во втулке, а затем впускное.

Под давлением топлива открывается нагнетательный клапан и топливо поступает через трубопроводы высокого давления к соответствующим форсункам.

Внутри форсунки расположена игла, которая сверху поджимается пружиной и закрывает топливу проход к отверстиям распылителя. Под действием давления топлива игла приподнимается, сжимая пружину, и топливо начинает поступать через распылитель в камеру сгорания. Процесс поступления топлива прекращается в момент, когда канавка отсечной кромки плунжера совпадѐт с выпускным отверстием во втулке. В этот момент происходит резкое падение давления топлива, и игла форсунки закрывает распылитель, не допуская подтекания топлива.

В двигателях большегрузных автомобилей устанавливают насос-форсунки, которые объединяют в одном агрегате насосную секцию и форсунку. Она устанавливается в головке цилиндров, и приводиться в действие от кулачка распределительного вала, при это отпадает необходимость в нагнетательном трубопроводе. В настоящее время растѐт интерес к насосам-форсункам как средству улучшения экономичности дизелей, благодаря созданию высокого давления впрыскивания, достигающего 200 МПа.

Вопросы для самопроверки

1.Какие системы впрыска бензина используются в двигателях с искровым зажиганием?

2.Назовите виды топливных систем дизелей.

3.Укажите назначения и условия работы корпусных деталей двигателя.

4.Для чего служит и из каких компонентов состоит коленчатый вал?

5.Для чего необходим косой разъѐм шатуна?

6.Опишите возможные технические решения механизма газораспределения.

7.Укажите назначение и основные функции системы смазывания.

8.Укажите назначение основных элементов системы охлаждения двигателя.

39

9.Какие двигатели (бензиновые или дизельные) более мощные, экономичные

иэкологичные?

2. Трансмиссия

Трансмиссия автомобиля выполняет две функции: она передаѐт крутящий момент от двигателя ведущим колѐсам автомобиля, а также изменяет его величину и направление. При передаче крутящего момента трансмиссия, кроме того, перераспределяет его между отдельными колѐсами.

Общее передаточное число трансмиссии в любой момент времени можно определить отношением частоты вращения коленчатого вала двигателя к частоте вращения ведущих колѐс.

Крутящий момент, передающийся на ведущее колесо, определяет тяговое усилие, действующее в контакте колеса с дорогой. Это усилие определяется делением величины крутящего момента на радиус колеса. Для движения автомобиля необходимо, чтобы тяговое усилие было больше суммы сил сопротивления движению. Максимальное тяговое усилие ограничивается сцеплением колѐс с дорогой. Силу сцепления можно определить, умножив часть массы автомобиля, приходящегося на одно колесо, на коэффициент сцепления – θ. Коэффициент сцепления зависит от состояния дорожного покрытия, качества и состояния шин и находится в пределах от 0,1 до 0,9.

2.1. Сцепление

Общее передаточное число трансмиссии в любой момент времени можно определить отношением частоты вращения коленчатого вала двигателя к частоте вращения ведущих колес.

Крутящий момент, передающийся на ведущее колесо, определяет тяговое усилие, действующее в контакте колеса с дорогой. Это усилие определяется делением величины крутящего момента на радиус колеса. Для движения автомобиля необходимо, чтобы тяговое усилие было больше суммы сил сопротивления движению. Максимальное тяговое усилие ограничивается не возможностью двигателя и трансмиссии, а сцеплением колеса с дорогой. Это усилие не должно превышать силу сцепления, иначе ведущие колеса будут проскальзывать.

Механическая трансмиссия должна иметь возможность кратковременного разъединения от работающего двигателя. Это необходимо при остановке автомобиля и при переключении передач в механической ступенчатой коробке передач. Кроме того, при троганье автомобиля с места и переключении передач соединение вала двигателя и трансмиссии должно происходить плавно, без резких рывков. В качестве устройства, обеспечивающем постепенное нагружение двигателя, применяют сцепление. Использование сцепления необходимо для переключения передач, т.к. если трансмиссия находится под нагрузкой крутящим

40