Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

техника транспорта обслуживание и ремонт

.pdf
Скачиваний:
40
Добавлен:
02.04.2015
Размер:
6.68 Mб
Скачать

4.4.1. Классификация шин

Автомобильные шины различаются по назначению, габаритам, конструкции и форме профиля.

По назначению автомобильные шины делят на две группы: для легковых и грузовых автомобилей. Шины, предназначенные для легковых автомобилей, могут применяться на грузовых автомобилях небольшой грузоподъѐмности и соответствующих прицепах. По расположению нитей в кордах различают два конструктивных типа шин: диагональные и радиальные.

В каркасе диагональных шин нити соседних слоев корда пересекаются под

определенным углом (95 - 115

0

) и число слоѐв всегда чѐтное. При контакте с

 

 

дорогой такой шины происходит изменение угла перекрещивания нитей корда, что создаѐт повышенные деформации, теплообразование и снижает срок службы шин.

У радиальных шин нити корда в каркасе расположены от борта к борту и не перекрещиваются друг с другом. Такое расположение обеспечивает лучшее постоянство формы пятна контакта шины с дорогой, меньшие перемещения элементов протектора и, как следствие, такие шины меньше нагреваются и изнашиваются. Этот фактор стал решающим при переходе от диагональных шин к радиальным. Кроме того, современные радиальные шины обладают меньшим сопротивлением качению и обеспечивают лучшую устойчивость и управляемость автомобиля.

По форме профиля шины могут быть обычного профиля, широкопрофильными, низкопрофильными, сверхнизкопрофильными, арочными и пневмокатки. Профиль обычных шин близок к окружности. Отношение высоты профиля к ширине у обычных шин составляет больше 90%. В целом наблюдается тенденция

куменьшению отношения высоты профиля к его ширине.

Шины современных автомобилей, в особенности легковых, низкопрофильные

или сверхнизкопрофильные, у которых отношение высоты профиля к ширине составляет от 70% до 60% и меньше.

Уменьшение высоты боковых стенок шины при неизменной ширине шины, даѐт возможность сделать колесо большего размера без увеличения общего диаметра шины. При этом увеличивается пространство для размещения большого, а значит и более эффективного дискового тормоза. Прицепы и полуприцепы современных автопоездов комплектуют сверхнизкопрофильными шинами, для того, чтобы понизить уровень пола и увеличить полезный грузовой объѐм. Уменьшение высоты профиля повышает жесткость боковых стенок шины, а это обеспечивает более быструю реакцию шины на командные сигналы рулевого управления. Уменьшение деформации боковых стенок шины снижает количество выделяемого при этом тепла и обеспечивает безопасную работу при более высоких скоростях. С другой стороны боковые стенки становятся жѐстче, а это приводит к ухудшению сглаживающей способности шин, а форма пятна контакта становится короче и шире. Такие шины могут отрицательно повлиять на управляемость

автомобиля.

Встречаются

легковые

автомобили,

оборудованные

 

 

81

 

 

сверхнизкопрофильными шинами, у которых высота профиля составляет 30% еѐ ширины.

Широкопрофильные и арочные шины устанавливают на колеса грузовых автомобилей с целью улучшения их проходимости. Одна такая шина может заменить сдвоенные шины.

4.4.2. Рисунок протектора шин

Большое влияние на движение автомобиля и его поведение на дороге оказывает тип рисунка протектора шины. Если бы автомобиль всегда ездил по сухим дорогам с твердым покрытием, то шина без рисунка протектора обеспечила бы наименьший шум и большой пробег до полного износа. Главная задача рисунка протектора – удалять воду из пятна контакта. Если шина гладкая, то при определѐнной скорости на мокрой дороге наступает явление, которое называется аквапланированием. При этом явлении вода не успевает вытесниться из пятна контакта и шина как бы всплывает над дорогой, теряя с ней контакт. Автомобиль при этом теряет управляемость, что может привести к аварии. Вот почему не допускается эксплуатировать автомобиль, если протектор изношен больше определенной величины. Для шин легковых автомобилей минимальная высота рисунка протектора составляет 1,6мм. Все современные шины имеют, так называемые индикаторы износа – небольшие выступы в канавках протектора. При износе протектора до уровня этих выступов они появляются на поверхности протектора, свидетельствуя о непригодности шины к дальнейшей эксплуатации. Некоторые зимние шины имеют два различных индикатора износа – один для летней эксплуатации, а другой для зимней.

Протектор некоторых шин специально создан для обеспечения наилучшего сцепления при движении в специфических дорожных условиях. Различают несколько типов рисунка протектора: дорожный, всесезонный, универсальный, повышенной проходимости, зимний и карьерный. Такая классификация существует в отечественной практике.

За рубежом для шин легковых автомобилей применяют несколько иную классификацию и шины подразделяются на шоссейные, зимние, всесезонные, скоростные и всесезонные скоростные.

На боковинах современных шин нанесена буквенная, цифровая и другая маркировка, несущая необходимую информацию (рис. 29).

82

Рис. 29. Обозначения на боковине шины:

1 – максимальная нагрузка и давление (по стандарту США); 2 – номер ТУ; 3 – количество слоѐв и тип корда каркаса и брекера; 4 – государственный знак высшей категории качества; 5 ширина профиля; 6 – серия 70 (отношение Н/В); 7 – обозначение радиальной шины; 8 – обозначение бескамерной шины; 9 – диаметр обода (13”); 10 – индекс грузоподъѐмности; 11 – индекс скорости (S – до 180 км/ч); 12 – условное обозначение износостойкости резины (по стандарту США); 13 - условное обозначение термостойкости шины (по стандарту США); 14 – условное обозначение кода завода (по стандарту США); 15 – номер сборщика (15); 16 – номер сертификата официального утверждения на соответствие шин Международным правилам №30 ЕЭК ООН (1247); 17 – условное обозначение кода размера ( по стандарту США); 18 – дата изготовления (28 неделя 1987 г.); 19 – знак официального утверждения шины на соответствие Международным правилам №30 ЕЭК ООН (Е); 20 – условный номер страны, выдавшей сертификат утверждения 5 – Швеция); 21 – серийный порядковый номер шины; 22 – радиальная шина; 23 – наименование модели

Безопасные шины

В течение многих лет ведущие производители шин делали попытки создания шин, которые не боятся проколов. Некоторые производители (Goodyear, Michelin) выпускали бескамерные шины с несколькими герметизирующими слоями, которые очень медленно выпускали воздух в случае небольших повреждений. Другие (Dunlop, Continental) устанавливали внутри шины специальные капсулы, которые при смятии шины в результате выхода воздуха

83

разрушались и выделяли герметизирующий состав и газ, который накачивал шину.

Компания Michelin разработала безопасную шину “PAX”, которая действительно не боится проколов и даѐт возможность автомобилю двигаться на проколотой шине около 160км со скоростью до 88км/час, сохраняя управляемость и устойчивость. Кроме повышенной безопасности эта шина обладает меньшим сопротивлением качению и меньшей деформацией при действии боковых сил, что улучшает показатели устойчивости и управляемости автомобиля.

Водитель автомобиля, оборудованного безопасными шинами, может не заметить прокола, поэтому производители таких шин требуют, чтобы на автомобили устанавливались системы предупреждающие водителя о падении давления в шинах.

Увеличить безопасность и сберечь шины могут не только описанные конструкции, но системы постоянной подкачки шин. Такие системы успешно используются на некоторых грузовых автомобилях повышенной проходимости, но они имеют довольно сложное устройство и требуют наличия постоянно работающего компрессора. Фирма Cycloid изготавливает небольшие насосы, которые устанавливают на ступицу колеса и соединяются шлангом с вентилем насоса. Такой насос приводится от вращающейся ступицы колеса и при этом гарантированно поддерживает постоянное давление воздуха в шине. Такие насосы предназначены для грузовиков, но фирма заявляет о скором выпуске насосов и для легковых автомобилей.

Вопросы для самопроверки

1.Подвеска автомобиля и еѐ назначение.

2.основные устройства подвески.

3.Характеристика амортизатора.

4.Типы колѐс, применяемых на современных автомобилях.

5.Типы шин, используемых на легковых и грузовых автомобилях.

6.Особенности камерной и бескамерной шин.

7.Чем отличается динамический дисбаланс колѐс от статического?

5. Системы управления

5.1. Рулевое управление

Изменить направление движения автомобиля можно двумя различными способами: за счѐт поворота колѐс или звеньев автомобиля в горизонтальной плоскости (кинематический способ) или за счѐт создания на колѐсах правого и левого борта различные по величине или по направлению продольных сил (силовой способ).

Для управления большинством современных автомобилей применяется кинематический способ, который может быть реализован путѐм:

-поворота управляемой оси;

84

-поворота управляемых колѐс; -поворота сочленѐнных звеньев (складывания рамы).

Поворот управляемой оси – это наиболее старый из известных способов управления. При таком способе ось с колѐсами поворачивалась относительно шкворня, установленного в центре повозки. Поворот управляемой оси сегодня применяется только в прицепах.

Чтобы совершить поворот без бокового скольжения колѐс, все они должны катиться по дугам, описанным из центра поворота О (рис. 30), лежащего на продолжении задней оси автомобиля. При этом передние управляемые колѐса должны поворачиваться на разные углы. Внутреннее по отношению к центру поворота колесо должно поворачиваться на угол αв, наружное колесо – на меньший угол αн. Это обеспечивается соединением рулевого управления в форме трапеции. Основанием трапеции служит балка 1 переднего моста автомобиля, боковыми сторонами являются левый 4 и правый 2 поворотные рычаги, а вершину трапеции образует поперечная тяга 3, которая соединяется с рычагами шарнирно. К рычагам 4 и 2 жѐстко присоединены поворотные цапфы 5 колѐс.

Рис. 30. Схема поворота автомобиля

Принцип управления за счѐт сочленѐнных звеньев применяется в случае, когда колѐса транспортного средства имеют большие размеры и поворот каждого из них затруднѐн. К недостаткам данной системы относится низкая точность управления при высоких скоростях, усложнение трансмиссии.

Наибольшее распространение в конструкции автомобиля получило рулевое управление с поворотными колѐсами. В этом случае каждое управляемое колесо может поворачиваться в горизонтальной плоскости относительно собственной оси поворота. Для синхронизации правого и левого колеса одной оси они связаны шарнирным механизмом – рулевой трапецией. Рулевая трапеция обеспечивает поворот правого и левого колес на разные углы, что позволяет им катиться на повороте по разным радиусам без проскальзывания. Основные преимущества

85

указанной схемы поворота: колѐса занимают при поворотах небольшой объѐм внутри кузова, что позволяет удобно размещать над управляемым мостом другие агрегаты автомобиля; для поворота колѐс требуются незначительные усилия.

Рулевой механизм (рис. 31) состоит из рулевого колеса 3, рулевого вала 2 и рулевой передачи 1, состоящей из зацепления червячной шестерни 1 червяка с зубчатым сектором, на вал которого крепится сошка 9 рулевого привода.

Рис. 31. Схема рулевого управления

Поворот управляемых колѐс происходит при вращении рулевого колеса 3, которое через вал 2 передаѐт вращение рулевой передаче 1. При этом червяк передачи, находящейся в зацеплении с сектором, начинает перемещать сектор вверх или вниз по своей нарезке. Вал сектора приходит во вращение и отклоняет сошку 9, которая своим верхним концом насажена на выступающую часть вала сектора. Отклонение сошки передаѐтся продольной тяге 8, которая перемещается вперѐд или назад. Продольная тяга 8 связана через верхний рычаг 7 с поворотной цапфой 4, поэтому еѐ перемещение вызывает поворот левой поворотной цапфы. От левой поворотной цапфы усилие поворота через нижние рычаги 5 и поперечную тягу 6 передаѐтся правой цапфе. Таким образом, происходит поворот обоих колѐс.

Управляемые колѐса поворачиваются рулевым управлением на ограниченный угол, равный 28 – 350. Ограничение вводится для того, чтобы исключить при повороте задевание колѐсами подвески или кузова автомобиля.

Двухосный автомобиль имеет, как правило, одну переднюю ось с управляемыми колѐсами. Иногда для улучшения маневренности такие автомобили снабжают всеми управляемыми колѐсами, но при этом усложняется конструкция рулевого управления и возникают проблемы с управляемостью на высоких скоростях. Поэтому на автотранспортных средствах с передними и задними управляемыми

86

колѐсами при движении с высокими скоростями принудительное управление задними колѐсами отключают, а колѐса фиксируются в нейтральном положении.

Рулевое управление автомобилей с поворотными колѐсами включает в себя следующие элементы:

-рулевое колесо с рулевым валом;

-рулевой механизм;

-рулевой привод.

Рулевой механизм представляет собой механический редуктор, его основная задача – увеличение приложенного к рулевому колесу усилия водителя, необходимого для поворота управляемых колѐс.

Рулевой привод представляет собой систему тяг и шарниров, связывающих рулевой механизм с управляемыми колѐсами.

Рулевой механизм.

Наибольшее распространение на легковых автомобилях сегодня получили реечные рулевые механизмы ( рис. 32).

Рис. 32. Рулевое управление легкового автомобиля :

1 – наконечник рулевой тяги; 2 – шаровой шарнир наконечника; 3 – поворотный рычаг; 4 – контргайка; 5 – тяга; 6, 8 – внутренние наконечники рулевых тяг; 7 – болты крепления рулевых тяг к рейке; 9 – скоба крепления рулевого механизма; 10 – опора рулевого механизма; 11 – защитный чехол; 12 – соединительная пластина; 13 – стопорная пластина; 14 – рейка; 18 – картер рулевого механизма; 19 – стяжной болт муфты; 20 – нижний фланец эластичной муфты; 21 – верхняя часть облицовочного кожуха; 22 – демпфер; 23 – рулевое колесо; 24 – шариковый подшипник; 25 – вал рулевого управления; 26 – нижняя часть облицовочного кожуха; 27 –

87

кронштейн крепления вала рулевого управления; 28 – защитный колпачок; 29 – роликовый подшипник; 30 – приводная шестерня; 31 – шариковый подшипник; 32 – стопорное кольцо; 33 – защитная шайба; 34 – уплотнительное кольцо; 35 – гайка подшипника; 36 – пыльник; 37 – уплотнительное кольцо упора; 38 – стопорное кольцо гайки упора; 39 – упор рейки; 40 – пружина; 41 – гайка упора; 42 – палец шарового шарнира; 43 – защитный колпачок; 44 – вкладыш шарового пальца; А – метка на пыльнике; В – метка на картере рулевого механизма

Конструкция такого механизма включает в себя шестерню, установленную на валу рулевого колеса и связанную с ней зубчатую рейку. При вращении рулевого колеса рейка перемещается вправо или влево и через присоединѐнные к ней тяги рулевого привода поворачивает управляемые колѐса..

Причинами широкого применения на легковых автомобилях именно такого механизма являются: простота конструкции, малые масса и стоимость изготовления, высокий КПД, небольшое число тяг и шарниров. Реечное управление обладает высокой жѐсткостью, что обеспечивает более точное управление автомобилем при резких маневрах.

Вместе с тем реечный рулевой механизм обладает и рядом недостатков: повышенная чувствительность к ударам от дорожных неровностей и передача этих ударов на рулевое колесо; склонность к виброактивности рулевого управления, повышенная нагруженность деталей, сложность установки такого рулевого механизма на автомобили с зависимой подвеской управляемых колѐс. Это ограничило сферу применения такого типа рулевых механизмов только легковыми автомобилями с независимой подвеской управляемых колѐс.

Легковые автомобили с зависимой подвеской управляемых колѐс, малотоннажные грузовые автомобили и автобусы, легковые автомобили высокой проходимости оснащаются, как правило, рулевыми механизмами типа “глобоидальный червяк – ролик”. Этот механизм представляет разновидность червячной передачи и состоит из соединѐнного с рулевым валом глобоидального червяка и ролика, установленного на вале. На этом же вале вне корпуса рулевого механизма установлен рычаг (сошка), с которым связаны тяги рулевого привода.

В сравнении с реечными рулевыми механизмами червячные механизмы имеют меньшую чувствительность к ударам от дорожных неровностей, обеспечивают лучшую маневренность автомобиля, допускают передачу больших усилий.

Наиболее распространѐнным рулевым механизмом для тяжѐлых грузовых самосвалов, автомобилей и автобусов является механизм типа “винт – шариковая гайка – рейка – зубчатый сектор”. Иногда такие рулевые механизмы можно встретить на больших и дорогих легковых автомобилях (Mercedes, Range Rover и

др.).

При повороте рулевого колеса вращается вал механизма с винтовой канавкой и перемещается надетая на него гайка. При этом гайка, имеющая на внешней стороне зубчатую рейку, поворачивает зубчатый вал сошки. Для уменьшения трения в паре винт – гайка передача усилий в ней происходит посредством шариков, циркулирующих в винтовой канавке.

Основная цель дополнительного поворота задних колѐс автомобиля – повышение маневренности, причѐм задние колѐса должны поворачиваться в

88

другом направлении, нежели передние. В рулевой привод современных автомобилей с задними управляемыми колѐсами устанавливают устройства, которые отключают поворот задних колѐс при скоростях выше 20 – 30км/ч.

Вряде случаев задние колѐса легковых автомобилей делаются поворотными не столько для повышения маневренности, сколько для подруливания при прохождении поворотов на большой скорости. Механический, гидравлический или электрический рулевой приводы обеспечивает поворот задних колѐс в ту или иную сторону на углы не более 2 - 3 0 , что улучшает управляемость на высоких скоростях.

Усилители рулевого управления. Если на управляемые колѐса приходится большой вес, то управление затрудняется из-за необходимости прикладывать к рулевому колесу значительные усилия. Это предопределило применение усилителей рулевого механизма.

Наличие усилителя снижает общую физическую нагрузку на водителя, в ряде случаев позволяет гасить удары от дорожных неровностей, усилитель обеспечивает возможность удержания автомобиля на дороге при повреждении шин или подвески. Но усилитель может оказать и отрицательное влияние на рулевое управление, например, из-за запаздывания включения при резких поворотах руля, потери водителем чувства дороги, снижения точности управления при слишком облегченном повороте рулевого колеса, колебаниях управляемых колѐс, спровоцированных усилителями.

Усилители, применяемые на современных автомобилях по принципу своего действия могут быть адаптивными и неадаптивными, а по типу привода –

гидравлическими, пневматическими и электрическими.

Адаптивные усилители могут изменять коэффициент усиления в зависимости от скорости автомобиля. У автомобиля с таким усилителем при маневрировании на стоянке усилие, необходимое для поворотов рулевого колеса, значительно ниже, чем у неадаптивных, а по мере увеличения скорости движения автомобиля усилие поворота увеличивается.

Большинство современных автомобилей с усилителем имеют гидравлический усилитель рулевого управления, в котором гидравлический насос, приводимый от двигателя, создаѐт давление в гидравлическом цилиндре. Наиболее распространены гидроусилители, в которых силовой и распределительный элементы объединены с рулевым механизмом в одном корпусе.

Разновидностью гидроусилителя является электрогидравлический усилитель, в котором гидравлический насос соединѐн с электродвигателем, питающимся от бортовой электросети автомобиля.

Впоследние годы на легковых автомобилях стали применяться электрические усилители рулевого управления, в которых функции силового элемента выполняет электродвигатель , а управляющего элемента – электронный блок.

Развитие электроники позволяет говорить о возможности в будущем перейти на электроуправление поворотом колѐс автомобиля (система Steer by wire). В таких системах будет отсутствовать механическая связь между рулевым колесом и управляемыми колѐсами, каждое колесо будет поворачиваться индивидуальным

89

электродвигателем по сигналу электронного блока управления. В таких системах традиционное рулевое колесо становится необязательным и может быть заменено, например, джойстиком.

5.2. Тормозное управление

Тормозным управлением называется совокупность систем автомобиля, призванных уменьшать скорость движения вплоть до полной остановки и удерживать автомобиль на уклоне неограниченное долгое время.

Тормозная сила в пятне контакта шины с дорогой тем больше, чем больше оказывается сопротивление вращению колеса. Чем лучше сцепление шины с дорогой, тем большая тормозная сила может быть получена. Сцепление зависит от вертикальной нагрузки, прижимающей колесо к дороге, рисунка протектора шины и еѐ конструкции, состояния дорожного покрытия. Максимальное сцепление колеса с дорогой при торможении обеспечивается при его качении с одновременным частичным проскальзыванием. Когда колесо полностью блокируется, т.е. скользит по дороге без проворачивания, то сцепление уменьшается на 20 – 30% от максимального значения. Желательно при торможении колесо не доводить до полной блокировки.

Для получения максимального значения тормозной силы все колеса автомобиля делаются тормозящими, т.е. используются все вертикальные реакции от дороги, действующие на колѐса автомобиля.

Каждое транспортное средство, от самых малых автомобилей весом 400 - 450кг и до больших карьерных самосвалов или автопоездов весом 500 – 600т, должно быть оборудовано рабочей, запасной и стояночной тормозными системами.

Рабочая (основная) тормозная система обеспечивает уменьшение скорости движения вплоть до полной остановки автомобиля, запасная тормозная система – остановку автомобиля в случае выхода из строя рабочей тормозной системы, а стояночная тормозная – удержание остановленного автомобиля на месте, неограниченно длительное время.

Помимо этих систем на грузовых автомобилях весом более 16т и на больших междугородных автобусах обязательно применение четвертой тормозной системы

– вспомогательной (противоизносной).

Рабочая тормозная система автомобиля обычно приводится в действие ножной тормозной педалью. На прицепах и полуприцепах рабочая система приводится в действие по гидравлическому, пневматическому или электрическому сигналу, поступающему от тормозной системы автомобиля-тягача в момент начала его торможения. Существует также тормозная система прицепов, в которых рабочая система начинает срабатывать вследствие накатывания прицепа на тормозящий тягач, при котором возникает сила сжатия в сцепке. Такая тормозная система прицепа называется тормозом наката.

Рабочая тормозная система, как и стояночная и запасная, состоит из тормозных механизмов и тормозного привода. На легковых автомобилях, малотоннажных грузовых автомобилях и микроавтобусах, применяют усилитель тормозов, а

90