Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ ГОСУДАРСТВЕННОГО ЭКЗАМЕНА.docx
Скачиваний:
319
Добавлен:
12.04.2015
Размер:
5.76 Mб
Скачать

2. Процессор

Основные характеристики, области применения ЭВМ различных классов.

К наиболее распространенным характеристикам ЭВМ относятся:

число разрядов в машинном слове ( влияет на точность вычислений и диапазон представляемых в машине чисел);

скорость выполнения основных видов команд;

емкость оперативной памяти;

максимальная скорость передачи информации между ядром ЭВМ (процессор или память) и внешним периферийным оборудованием;

эксплуатационная надежность машины.

При создании новых ЭВМ обеспечивается значительное возрастание отношений производительность/стоимость и надежность/стоимость.

СуперЭВМ

В настоящее время к сверх производительным машинам (системам) относят машины с производительностью в сотни и более GFLOP/s. Подобные машины используются для решения особенно сложных научно-технических задач, задач обработки больших объемов данных в реальном масштабе времени, поиска оптимальных в задачах экономического планирования и автоматического проектирования сложных объектов.

Самым ярким примером служит деятельность Cray Research. Эта фирма долго лидировала на рынке суперЭВМ. Но с разрушением «железного занавеса» спрос на ее компьютеры упал, что привело к распаду корпорации. В прошлом году в автокатастрофе погиб и ее основатель – Симур Крей.

Долгое время лидером в области суперкомпьютеров оставалась Cray Research,. По данным на начало 1997 года она занимала 43% всего рынка. Cray Research, приобретенная корпорацией Silicon Graphics в начале 1996 г, продает широкий спектр систем, начиная со старых моделей семейства J90 до машин новой серии Origin, в которых используется архитектура коммутации, построенная на базе процессора MIPS R10000.

Hewlett-Packard, владеет 7% этого сегмента рынка. Другими американскими производителями мощных компьютеров являются IBM, которая строит свои суперкомпьютеры SP на многокристальной версии PowerPC (14% рынка), а также Digital Equipment, предлагающая кластеры SMP-систем на базе процессора Alpha (13% рынка).

И наконец, японские фирмы Fujitsu и NEC занимают твердые позиции на рынке суперкомпьютеров, имея доли в 8 и 4% соответственно.

Сегодня самые быстрые суперЭВМ принадлежат Intel. В настоящее время Intel выполняет заказ министерства энергетики США.

В архитектуре суперЭВМ обнаруживается ряд принципиальных отличий от классической фоннеймонавской модели ЭВМ. Различные архитектуры суперЭВМ будут рассмотрены в теме «архитектурные особенности организации ЭВМ различных классов»

^ Малые и микроЭВМ.

Имеется большое число, условно говоря, «малых» применений вычислительных машин, таких, как автоматизация производственного контроля изделий, обработка данных при экспериментах, прием и обработка данных с линии связи, управление технологическими процессами, управление станками и разнообразными цифровыми терминалами, малые расчетные инженерные задачи.

В настоящее время малые и микроЭВМ встраивают в различные «умные» приборы (электросчетчики, микроволновки, стиральные машины, модемы, датчики и т.д.).

^ МинисуперЭВМ и суперминиЭВМ.

В классификации отсутствуют четкие границы между рассмотренными типами ЭВМ. В последнее время стали выделять два промежуточных типа.

К суперминиЭВМ относят высокопроизводительные ЭВМ содержащих один или несколько слабосвязанных процессоров, объединенных с общей магистралью (общей шиной). Для суперминиЭВМ характерно, что скорость выполнения его арифметических операций над числами с плавающей точкой существенно ниже скорости работы, определяемой по смеси команд, соответствующей информационно-логическим запросам. К этому типу можно отнести IBM-овский шахматный компьютер Deep Blue.

МинисуперЭВМ – это упрощенные (в частности за счет более короткого слова) многопроцессорные ЭВМ, чаще всего со средствами векторной и конвейерной обработки, с высокой скоростью выполнения операций над числами с плавающей точкой. К этому типу можно отнести ЭВМ с SMP(Symmetric multiprocessor) архитектурой.

Первое направление является традиционным - применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений. Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она родилась примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Математическая база этой новой сферы практически отсутствовала, в течение последующих 15-20 лет она была создана. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки. Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими. Для исключения взаимных помех между программами пользователей в структуру машин были введены средства разграничения: блоки прерываний и приоритетов, блоки защиты и т.п. Для управления разнообразной периферией стали использоваться специальные процессоры ввода-вывода данных или каналы. Именно тогда и появился дисплей как средство оперативного человеко-машинного взаимодействия пользователя с ЭВМ. Новой сфере работ в наибольшей степени отвечали мини-ЭВМ. Именно они стали использоваться для управления отраслями, предприятиями, корпорациями. Машины нового типа удовлетворяли следующим требованиям: • были более дешевыми по сравнению с большими ЭВМ, обеспечивающими централизованную обработку данных; • были более надежными, особенно при работе в контуре управления; • обладали большой гибкостью и адаптируемостью настройки на конкретные условия функционирования; • имели архитектурную прозрачность, т.е. структура и функции ЭВМ были понятны пользователям. Начало выпуска подобных ЭВМ связано с малыми управляющими машинами PDP фирмы DEC. Термин “мини-ЭВМ” появился в 1968 г. применительно к модели PDP-8. В настоящее время использование мини-ЭВМ сокращается. Исчезает и термин мини-ЭВМ. На смену им приходят ЭВМ других типов: серверы, обеспечивающие диспетчерские функции в сетях ЭВМ, средние ЭВМ или старшие модели персональных ЭВМ (ПЭВМ). Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др. Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом , вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам. Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ. Фирмы-производители средств ВТ очень внимательно отслеживают состояние рынка ЭВМ. Они не просто констатируют отдельные факты и тенденции, а стремятся активно воздействовать на них и опережать потребности потребителей. Так, например, фирма IBM, выпускающая примерно 80% мирового машинного “парка”, в настоящее время выпускает в основном четыре класса компьютеров, перекрывая ими широкий класс задач пользователей. • Большие ЭВМ (mainframe), которые представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось, что с появлением быстропрогрессирующих ПЭВМ большие ЭВМ обречены на вымирание. Однако они продолжают развиваться и выпуск их снова стал увеличиваться , хотя их доля в общем парке постоянно снижается. По оценкам IBМ, около половины всего объема данных в информационных системах мира должно храниться именно на больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов. Начало этого направления было положено фирмой IBM еще в 60-е годы выпуском машин IBM/360, IBM/370. Эти машины получили широкое распространение в мире. Новая серия машин S/390 продолжает эту линию. Она насчитывает более двух десятков моделей: a) IBM S/390 Parallel Enterprise Server-Generation 3 (13 моделей) - призваны заменить большие ЭВМ ранних моделей. Они позволяют задавать переменную конфигурацию (число процессоров - 1-10, емкость оперативной памяти - 512-81292 Мбайта, число каналов - 3-256); б) IBM S/ 390 Multiprise 2000 (тоже 13 моделей) - ориентированы на использование на средних предприятиях (число процессоров 1-5).Развитие ЭВМ данного класса имеет большое значение для России. В 1970-1990 гг. основные усилия нашей страны в области вычислительной техники были сосредоточены на программе ЕС ЭВМ (Единой системы ЭВМ), заимствовавшей архитектуру IBM 360/370. Было выпущено несколько десятков тысяч ЭВМ этой системы. Более пяти тысяч ЭВМ серии ЕС еще продолжают работать в различных учреждениях и производствах. Большинство АСУ верхнего уровня государственного управления в РФ (в силовых структурах, банках, на транспорте, связи и т.д.) оснащено этими машинами. Накоплен громадный программно-информационный задел, который следует рассматривать как элемент национального достояния (по стоимости) и элемент национальной безопасности (по стратегической значимости). Поэтому принято решение на дальнейшее развитие этого направления. После подписания соглашения с фирмой IBM в марте 1993 г. Россия получила право производить 23 новейшие модели-аналоги ЭВМ IBM S/390 с производительностью от 1,5 до 167 млн. операций в секунду. По расходам на управление и эксплуатацию эти машины оказываются эффективнее других вычислительных средств. • Машины RS/6000 - очень мощные по производительности и предназначенные для построения рабочих станций для работы с графикой, Unix-серверов, кластерных комплексов. Первоначально эти машины предполагалось применять для обеспечения научных исследований. • Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400 (Advanced Portable Model 3) -“бизнес-компьютеры”, 64-разрядные). В этих машинах особое внимание уделяется сохранению и безопасности данных, программной совместимости и т.д. Они могут использоваться в качестве серверов в локальных сетях. • Компьютеры на платформе микросхем фирмы Intel. IBM-совместимые компьютеры этого класса составляют примерно 50% рынка всей компьютерной техники. Более половины их поступает в сферу малого бизнеса. Несмотря на столь внушительный объем выпуска персональных компьютеров этой платформы, фирма ШМ проводит большие исследования и развитие собственной альтернативной платформы, получившей название Power PC. Это направление позволило бы значительно улучшить структуру аппаратурных средств ПК, а значит, и эффективность их применения. Однако новые модели этой платформы пока не выдерживают конкуренции с IBM PC. Немаловажным здесь является и неразвитость рынка программного обеспечения. Поэтому у массового пользователя это направление спроса не находит, и доля компьютеров с процессорами Power PC незначительна. Кроме перечисленных типов вычислительной техники, необходимо отметить класс вычислительных систем, получивший название “суперЭВМ”, С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель “производительность/стоимость”. Например, при создании суперЭВМ GF-11 (Gigaflop-11) с быстродействием 11 млрд. операций в секунду предварительные расчеты, проведенные фирмой ЮМ, показали, что применение этой системы позволит решить целый комплекс новых задач. Одной из таких задач было уточнение массы протона на основе квантовой хромодинамики - доминирующей теории, пытающейся описать первичную структуру материи. При использовании новой ЭВМ должна была быть выполнена эта работа за 1,5 - 4 месяца с точностью 10%. Решение же этой задачи на существующей вычислительной технике требовало около 15 лет. Еще одним примером крупномасштабных задач следует считать задачу разработки новых схем СБИС для следующих поколений ЭВМ. СуперЭВМ позволяют по сравнению с другими типами машин точнее, быстрее и качественнее решать подобные задачи, обеспечивая необходимый приоритет в разработках перспективной вычислительной техники. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров.

Центральные устройства ЭВМ.

Состав процессора.

Центральный процессор – устройство для обработки данных и управления всеми устройствами машины.

Оперативная память – упорядоченный набор ячеек. Единица – ячейка – байт – 8 двоичных разрядов.

ЦП: состоит из УУ(управляющее устройство), АЛУ(арифметико-логическое устройство) и СОП(сверхоперативная память)

Технические характеристики ЦП – количество операций в еденицу времени

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

В состав центрального процессора входят:

• устройство управления (УУ);

• арифметико-логическое устройство (АЛУ);

• запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;

• генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относятся:

• Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.

• Тактовая частота в МГц. Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 (1974 г.), 80286 (1982 г.), 80386DX (1985 г.), 80486DX (1989 г.), 80586 или Pentium (1993 г.), Pentium Pro (1995 г.), Pentium II (1997 г.), Pentium III (1999 г.), Pentium IV (2001 г.). Как видно, увеличение частоты – одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели. У Intel – это Pentium и модель с урезанной кэш-памятью Pentium Celeron; у AMD – это Athlon и модель с урезанной кэш-памятью Duron.

• Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 (2x8); если 4 байта, то 32; если 8 байтов, то 64.

Для пользователей процессор интересен прежде всего своей системой команд и скоростью их выполнения. Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Для математических вычислений к основному микропроцессору добавляют математический сопроцессор. Начиная с модели 80486DX процессор и сопроцессор выполняют на одном кристалле.

Программная модель микропроцессора Intel 8086.

 Микропроцессор Intel 8086 приспособлен для работы с несколькими процессорами в одной системе, причем возможно использование как независимых процессоров, так и сопроцессоров

 Внешние шины адреса и данных в 8086 объединены, и поэтому наличие на шине в данный момент времени информации или адреса определяется порядковым номером такта внутри цикла. Процессор ориентирован на параллельное выполнение команды и выборки следующей команды

 Микропроцессор i8086 состоит из трех основных частей: устройства сопряжения шины, устройства обработки и устройства управления и синхронизации

 Устройство сопряжения шины состоит из шести 8-разрядных регистров очереди команд, четырех 16-разрядных регистров адреса команды, 16-разрядного регистра команды и 16-разрядного сумматора адреса.

Программная модель процессора - это функциональная модель,

используемая программистом при разработке программ в кодах ЭВМ или на языке ассемблера. В такой модели игнорируются многие аппаратные особенности в работе процессора. В процессоре 8086 имеется несколько быстрых элементов памяти, которые называются регистрами. Каждый из регистров имеет

уникальную природу и предоставляет определенные возможности, которые другими регистрами или ячейками памяти не поддерживаются.

Регистры разбиваются на четыре категории: регистры общего назначения, регистр флагов, указатель команд и сегментные регистры. Все регистры 16-разрядные.

Литература: [1], [2], [4], [5].