Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект_СвСУ.docx
Скачиваний:
85
Добавлен:
11.05.2015
Размер:
8.64 Mб
Скачать

5.4RCцепи для генераторов синусоидальных колебаний

В схемах генераторов синусоидальных колебаний, до частот 1 кГц применяют три основные фазовращающие цепи, представленные на рисунке 5.6.

Рисунок 5.6 — RC цепи:

трехзвенная R–параллель, а); трехзвенная С–параллель, б);

последовательно–параллельная цепь (мост Вина), в)

В схеме, изображенной на рисунке 5.6, а), трехзвенная R–параллель образована тремя одинаковыми дифференцирующими CR–цепочками, каждая из которых, в пределе, дает фазовый сдвиг +90°. В реальных генераторах используется сдвиг 60° для трехзвенной цепи (общий 180°). Если цепь четырехзвенная, то сдвиг каждого звена 45°.

Важной цифрой является 180°, потому что еще 180° образует инвертор. Инвертор образует фазовый сдвиг 180° в “+” или “–” область, в то время как трехзвенная цепь образует фазовый сдвиг реактивный +180°. Поэтому общий фазовый сдвиг можно считать либо +360° либо 0°. И в том и в другом случае будет ПОС.

В схеме, представленной на рисунке 5.6, б), все аналогично, она на интегрирующих звеньях. Результирующий фазовый сдвиг –180° дополняется “+” или “–” фазовым сдвигом инвертора 180°.

Третья схема (см. рисунок 5.6, в) – последовательно–параллельная цепь, или мост Вина. Он образован двумя цепями, представленными на рисунке 5.7. Характеристика есть результат взаимной реакции.

Рисунок 5.7 — Компоненты последовательно–параллельной цепи, их отдельные и общая характеристики

В итоге образуется подобие LC контуру и если эту схему включить в схему с ПОС, то будет или генератор синусоидальных колебаний, если выполняется условие , или фильтр, если, причем реакция на входной сигнал точно такая же, как у схемы сLC контуром.

5.5 Генераторы синусоидальных колебаний сRиC–параллелями

В первой схеме (см. рисунок 5.8, а) сопротивления Rб1, Rб2 участвуют в формировании R–параллели.

Рисунок 5.8 — Генераторы синусоидальных колебаний с R и С–параллелями

Они предназначены для смещения по току VT и образования ООС по постоянному току на эмиттерном резисторе, т. е. для стабилизации рабочей точки. Примем на базовом электроде VT первый возбуждающий полупериод положительный. Он усиливается и инвертируется. Второе инвертирование осуществляется посредством трехзвенной R–параллели +180°, образуется ПОС и генерация.

Во второй схеме (см. рисунок 5.8, б) резисторы С–параллели одновременно используются и для образования смещающего тока и для стабилизации рабочей точки по напряжению. Первый положительный возбуждающий полупериод инвертируется в отрицательный, а затем С–параллелью смещается на –180°, образуется ПОС. В эмиттерной цепи VT резистора нет, т.к. стабилизирующая обратная связь выполнена по коллекторной цепи.

5.6 Генераторы синусоидальных колебаний с кварцевой стабилизацией

Общие сведения о пьезоэлектрических кварцах и особенностям применения в импульсных схемах генераторов приведены в разделах 4.21, 4.22. Примеры принципиальных схем генераторов синусоидальных колебаний, стабилизированных кварцами, изображены на рисунках 5.9. Если схемы генераторов с LC контурами и RC цепями выявляют нестабильность частоты до нескольких процентов и более, то кварцевые генераторы синусоидальных колебаний намного стабильнее – десятые или сотые доли процента. Из раздела 4.21 известно, что в дополнение к кварцу, схема должна содержать фильтр нижних частот, если возбуждение производится по первой гармонике, либо контур, тогда по любой гармонике.

Рисунок 5.9 — Схема генератора с емкостной трехточкой и ООС через кварц, а); схема генератора на двух каскадах, б)

В схеме, изображенной на рисунке 5.9, а), между базовым и коллекторным электродами включен кварц. Примем, что на базовом электроде первый полупериод положительный, а на коллекторном электроде первый полупериод отрицательный. Следовательно, через кварц поступает тот же первый полупериод отрицательный. Имеет место ООС на всех частотах кроме резонансной. ООС уменьшает коэффициент усиления транзисторного каскада. На резонансных частотах, как известно из 4.20, есть две частоты, где колебания совпадают по фазе и противофазны. В этой схеме используется именно та резонансная частота, на которой фазы возбуждающего и собственного колебания кварца противонаправлены, поэтому кварц имеет максимальное сопротивление, ООС уменьшается. Следовательно, общий коэффициент усиления возрастает, удовлетворяется соотношение:

,

где – коэффициент передачи прямой цепи,– коэффициент передачи цепи обратной связи.

В итоге, схема генерирует, причем только на одной частоте, хотя гармоник много. Одна частота избирается LC1С2 контуром. Она может быть либо 1–ой, 2–ой, … , 25–ой (любой).

На схеме, представленной на рисунке 5. 9, б) , первый каскад выполнен с обычным резонансным LC контуром, настраивается на частоту выбраной гармоники (см. рисунок 5.10).

Рисунок 5.10 — Гармоники кварца и резонансная характеристика LC контура в схеме рисунка 5.9, б)

Второй каскад – обычный эмиттерный повторитель. Между каскадами вводится гальваническая развязка посредством конденсатора Ссв. Первый полупериод на базе VT1 примем положительным. В коллекторной цепи VT1 первый полупериод будет отрицательным. Этот первый отрицательный полупериод почти без изменений проходит через Ссв на базовый электрод транзистора VT2, повторяется по форме в его эмиттерной цепи на резисторе Rэ2 и через кварц на частоте его минимального резонансного сопротивления передается первым отрицательным полупериодом на резистор Rэ1. Из схемы рисунка 5.9, б) видно, что собственный сигнал каскада VT1 на резисторе Rэ1 имеет первый положительный полупериод, а прошедший через кварц – отрицательный. Происходит их взаимное вычитание, компенсация. Следовательно, сигнал ОС противофазен базе VT1, они вычитаются. Образуется эффект, эквивалентный подключению Rэ1 к конденсатору, т.е. происходит уменьшение общего эмиттерного сигнала, вычитающегося из базового VT1. Поэтому базовый сигнал дает большее усиление на каскаде VT1. Говорят о положительной обратной связи.

Для начала генерации (возбуждения) необходима та резонансная частота, на которой происходит совпадение с резонансным максимумом LC контура, а сопротивление кварца минимально, т. е. из двух рядом расположенных частот выбранной гармоники кварца это электро–механическое колебание, генерирующее совпадение фазы, минимум сопротивления.