Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эксплуатация (мет.пособие).doc
Скачиваний:
300
Добавлен:
29.05.2015
Размер:
2.59 Mб
Скачать

Принцип работы и устройство

Угол сдвига фаз между токами в трехфазной сети в нормаль­ных условиях равен 120°, а при обрыве одной из фаз в исправных фазах угол сдвига становится равным 180°. Таким образом, если контролировать изменение угла сдвига фаз между токами нагрузки электродвигателя, то его можно защитить от основ­ного аварийного режима - обрыва фазы. Устройства защиты, ре­агирующее на изменение угла сдвига фаз между токами нагруз­ки электродвигателя, называются фазочувствительными устрой­ствами защиты (ФУЗ), а специальные трансформаторы тока, форми­рующие из трехфазных токов нагрузки измеряемые напряжения U1 и U2 с определенным углом сдвига , - фазовращающими тран­сформаторами тока. Рассмотрим как с помощью трансформаторов тока можно конт­ролировать угол сдвига между векторами токов нагрузки.

Из трех фазных токов - ia, ib, ic питания электродвигателя можно формировать измеряемые напряжения U1 и U2 методом трех, двух и одного фазовращающих трансформаторов тока. На рисунке 10.2 показан наиболее распространенный вариант формирования напряжений U1 и U2 с использованием двух фазовращающих трансформаторов тока. Каждый трансформатор тока имеет две первичные токовые обмотки с различным числом витков W1 и W2, включаемые в разные фазы питания электродвигателя, при­чем навстречу одна другой (начальные концы соответствующих обмоток на рисунке обозначены черной точкой). Таким образом, в сердечнике трансформатора T1 суммируются магнитные потоки, создаваемые токами фаз А и В.

Рисунок 7.1 – Принципиальная схема и схема включения защиты ФУЗ-М

Рисунок 7.2 – Электрическая схема ФУЗ

Магнитные потоки ФА и ФВ пропорциональны току нагрузки электродвигателя и числу первичных витков W1 и W2. Суммарный магнитный поток Ф1, в сердечнике трансформато­ра T2 равен геометрической сумме магнитных потоков, созда­ваемых токами фаз А и В (рисунок 7.3):

Аналогично токам фаз В и С создается магнитный поток в сердечнике трансформатора Т2.

Из векторной диаграммы видно, что суммарные магнитные потоки взаимно сдвинуты на определенный угол по фазе , который зависит от отношения числа первичных витков W1/W2 трансформаторов тока. Из векторной диаграммы видно, что ,

где:

Рисунок 7.3 - Векторная диаграмма

Следовательно, изменяя число первичных витков трансфор­маторов тока так, чтобы менялось их соотношение, можно из­менять суммарные магнитные потоки ии угол сдвига между ними. Суммарные магнитные потоки исоздают во вторичных обмотках трансформаторов тока пропорциональные им измеряемые напряженияU1 и U2 и с таким же углом сдвига по фазе  (для упрощения векторной диаграммы на рисунке 7.3 векторы иU1, а также иU2 совмещены). Суммарные магнитные потоки определяют путем геометрического сложения:

где: К - коэффициент пропорциональности;

IН - ток нагрузки двигателя;

Wп - приведенное число первичных витков трансформа­торов тока, определяющее суммарные магнитные потоки.

Изменением числа первичных витков трансформаторов тока W1 и W2 можно получить  = 90° ± 2°. То есть, изменяя число витков W1 и W2 можно менять чувствительность защиты, ос­тавляя без изменения его фазовую характеристику.

Отношение числа витков первичных (токовых) обмоток ФТТ в ус­тройствах ФУЗ-М выбрано W1/W2 = 1/3.

Напряжения U1 и U2 со вторичных обмоток трансформаторов токов подаются на кольцевой детектор, который состоит из по­следовательно соединенных диодов VД1 ... VД4 и балластных сопротивлений R1...R4. При равенстве напряжения U1 и U2 и угла сдвига  = 90°, ток через кольцевой детектор проте­кать не будет и реле K1 обесточено.

При обрыве любой фазы нарушается рассмотренная система образования измеряемых напряжений U1 и U2, меняются их числовые значения и угол сдвига фаз , который становится равным 0° или 180° (в зависимости от того, в которой фазе произошел обрыв). На выходе фазового детектора с косинусной характеристикой появляется большое напряжение (ток), и реле защиты срабатывает. Если электродвигатель не запускается или заклинивается во время работы, то токи нагрузки электродви­гателя, следовательно, и измеряемые напряжения U1 и U2 так­же увеличиваются. Ток в катушке реле K1 возрастает и стано­вится больше тока притягивания реле Iрп.

На рисунке 7.4 представлены фазовые характеристики защиты, кото­рые показывают изменение тока в катушке при изменении угла . На характеристике точки 5 и 6 соответствуют обрыву фаз при пуске, 3 и 4 - обрыв фазы при работе двигателя под нагрузкой, точка 1 - при заклинивании ротора двигателя, точка 2 соответствует нормальной работе двигателя при соотношении числа витков W1/W2 = 2/3.

Рисунок 7.4 - Фазовые характеристики .

Для защиты электродвигателей от перегрузки в защите ФУЗ-М предусмотрена специальная схема контроля перегрузки (Рисунок 10.1). Схема контроля перегрузки состоит из регулируемого тиристорного выпрямителя (VS1, R5, R6, R7), зарядно-разрядной цепи (R8, R9), накопительного конденсатора C1, порогового элемента - тиристора VS3 со стабилитроном VД5, режимных резисторов R10 ... R12 и шунтирующего тиристора VS2.

Схема контроля перегрузки работает следующим образом. При нормальной нагрузке электродвигателя напряжения на конденса­торе C1 нет, так как тиристор VS1 закрыт. При перегрузках напряжение U2, которое пропорционально токам нагрузки двух фаз, увеличивается, тиристор VS1 пропускает ток и конденса­тор CI заряжается. Зарядка конденсатора происходит с задерж­кой во времени, что обеспечивается зарядным резистором R8. Если перегрузка длительна, конденсатор заряжается до напря­жения включения стабилитрона VД5, тиристор VS3 через огра­ничивающий резистор R11 открывает тиристор VS2. Таким обра­зом, баластный резистор R4 шунтируется малым сопротивлением открытого тиристора VS2. Кольцевой детектор сильно разбалансирован, и вследствие этого через кольцевой детектор будет протекать ток, который способствует срабатыванию реле. Контакты K1.1 реле К1 разрывают цепь управления магнитным пус­кателем K2. Двигатель отключается от сети. Уставка тока сра­батывания при перегрузках устанавливается потенциометром R6.

После кратковременной перегрузки избыток заряда конден­сатора C1 стекает через резисторы R8, R9 и схема контроля перегрузки не срабатывает. При заклиненном электродвигате­ле, когда напряжение U2 резко возрастает, конденсатор C1 быстро заряжается, и через 5...6 секунд защита срабатывает.

Таким образом, ФУЗ-М защищает электродвигатель от неполнофазного режима, заклинивания (незапускания) и от любых ра­нее установленных перегрузок с заданной выдержкой времени, то есть от основных аварийных режимов. Выпускается ФУЗ-М различных модификаций. Основные параметры защиты приведены в таблице 7.3.

Таблица 7.3 - Основные параметры модернизированного

фазочувствительного устройства защита ФУЗ-М

Наименование показателей

Значение показателей устройств

ФУЗ-1М

ФУЗ-2М

ФУЗ-3М

ФУЗ-4М

ФУЗ-5М

Диапазоны рабочего тока, А

1…2

2…4

4…8

8…16

16…32

Ток срабатывания при обрыве фаз, А, не более

1

2

4

8

16

Время срабатывания при обрыве фаз, с., не более

0,1

0,1

0,1

0,1

0,1

Время срабатывания при перегрузке(1,5IН), с., не более

30-50

30-50

30-50

30-50

30-50

Время срабатывания при перегрузке(6,5IН), с., не более

6-10

6-10

6-10

6-10

6-10

Разброс тока срабатывания, %, не более

10

10

10

10

10

Рабочее напряжение, В

380

380

380

380

380

Потребляемая мощность, Вт, не более

5

5

5

5

5