Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
модифицирование.doc
Скачиваний:
45
Добавлен:
08.06.2015
Размер:
651.26 Кб
Скачать

3. Тепловой пограничный слой. Диффузионный пограничный слой. Величина коэффициента переноса в металлах. Особенности явлений переноса при лазерном воздействии.

Пограничный слой, область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. П. с. характеризуется резким изменением в поперечном направлении скорости (динамический П. с.), или температуры (тепловой, или температурный, П. с.), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, П. с.). На формирование течения в П. с. основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического П. с. происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри П. с. плавно изменяются температура и концентрация.

Режим течения в динамическом П. с. зависит от Рейнольдса числа Re и может быть ламинарным или турбулентным. При ламинарном режиме отдельные частицы жидкости (газа) движутся по траекториям, форма которых близка к форме обтекаемого тела или условной границы раздела между двумя жидкими (газообразными) средами. При турбулентном режиме в П. с. на некоторое осреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в П. с. ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в П. с. не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.

Толщина d динамического П. с. определяется как то расстояние от поверхности тела (или от границы раздела жидкостей), на котором скорость в П. с. можно практически считать равной скорости во внешнем потоке. Значение d зависит главным образом от числа Рейнольдса, причём при ламинарном режиме течения d ~ l×Re-0.5, а при турбулентном - d ~ l×Re-0.2, где l - характерный размер тела.

Развитие теплового П. с. определяется, помимо числа Рейнольдса, также Прандтля числом, которое характеризует соотношение между толщинами динамического и теплового П. с. Соответственно на развитие диффузионного П. с. дополнительное влияние оказывает диффузионное число Прандтля, или Шмидта число.

При больших скоростях внешнего потока газа внутри П. с. происходит переход кинетической энергии молекул в тепловую, вследствие чего локальная температура газа увеличивается. В случае теплоизолированной поверхности температура газа в П. с. может приближаться к температуре торможения

,

где Te температура газа вне П. с., k = cp/cv - отношение теплоёмкостей при постоянном давлении и постоянном объёме.

Характер течения в П. с. оказывает решающее влияние на отрыв потока от поверхности обтекаемого тела. Причина этого заключается в том, что при наличии достаточно большого положительного продольного градиента давления кинетическая энергия заторможенных в П. с. частиц жидкости становится недостаточной для преодоления сил давления, течение в П. с. теряет устойчивость и возникает т. н. отрыв потока (см. Отрывное течение).

При очень больших числах Рейнольдса толщина П. с. очень мала по сравнению с характерными размерами тела. Поэтому почти во всей области течения, за исключением тонкого П. с., влияние сил вязкости несущественно по сравнению с инерциальными силами, и жидкость в этой области можно рассматривать как идеальную. Одновременно вследствие малой толщины П. с. давление в нём в поперечном направлении можно практически считать постоянным. В результате весьма эффективным оказывается такой метод изучения обтекания тел потоком жидкости (газа), когда всё поле течения разбивается на 2 части - область течения идеальной жидкости и тонкий П. с. у поверхности тела. Течение в первой области изучается с помощью уравнений движения идеальной жидкости, что позволяет определить распределение давления вдоль поверхности тела; тем самым определяется и давление в П. с. Течение внутри П. с. рассчитывается после этого с учётом вязкости, теплопроводности и диффузии, что позволяет определить поверхностное трение и коэффициент тепло- и массообмена. Однако такой подход оказывается неприменимым в явном виде в случае отрыва потока от поверхности тела. Он неприменим и при малых Re, когда влияние вязкости распространяется на довольно большие расстояния от поверхности тела.

Аналогично понятиям гидродинамического и теплового пограничных слоев можно ввести понятие диффузионного пограничного слоя. В его пределах концентрация активного компонента смеси изменяется от  на поверхности раздела фаз до  на внешней границе слоя (рис. 14.4). 

Рис. 14.4. Диффузионный пограничный слой

Внутри пограничного слоя справедливо условие ∂/∂y≠0, вне диффузионного пограничного слоя и на его внешней границе выполняются условия Диффузионный пограничный слой может образовываться в процессах испарения, сублимации, вдува вещества через пористую стенку, при конденсации пара из парогазовой смеси и т. д. Для диффузионного пограничного слоя дифференциальное уравнение массообмена может быть упрощено.

В случае омывания плоской неограниченной пластины поле концентрации в диффузионном пограничном слое можно описать следующим уравнением: где  - поперечная составляющая плотности потока массы -го компонента смеси. Для турбулентного течения где  - коэффициент турбулентного переноса вещества, м2/с. Для турбулентного течения величины , ωx, ωy входящие в уравнение (14.33) и (14.34). являются осредненнымн во времени величина ми (см. § 4.5). Дифференциальное уравнение диффузионного пограничного слоя (14.33) аналогично уравнениям теплового и гидродинамического пограничных слоев (4.28)(4.30) и справедливо при идентичных условиях. Дополнительным условием справедливости уравнения (14.33) является выполнение неравенства ωус много меньше ω0согласно которому поперечная составляющая скорости, обусловленная процессами испарения, вдува и т. п., должна быть намного меньше скорости вынужденного продольного течения. Если, например, ωус много больше ω0 то по сути дела будет преобладать движение по нормали к поверхности раздела фаз. Продольное движение при этом будет несущественно.