Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АСУ ТП / Коллоквиум_АСУ.docx
Скачиваний:
778
Добавлен:
11.06.2015
Размер:
6.15 Mб
Скачать

8. Виды и основные элементы структурных схем сау. Типовая структурная схема сау.

Простейшая функциональная структурная схема системы управле­ния показана на рис.3.3 Здесь контроллер КН, получая информа­цию о цели управления в виде меняющегося во времени t сигнала зада­ния x(t), формирует управляющее воздействие u(t) на объект ОБ таким образом, чтобы управляемая величина у(t) менялась в соответ­ствии с изменением x(t), т. е. так, чтобы достигалась цель управления:

Рис.3.3. Функциональная схема системы автоматического управления.

Очевидно, что подобная система управления может реально функцио­нировать только тогда, когда между изменением y(t) и вызвавшим его изменением \x(t) в объекте существует однозначное соответствие. Это соответствие отражается в математической модели объекта, которая предполагается заранее известной и может быть использована для определения алгоритма функционирования контроллера (алгоритма управления). Этот алгоритм определяет, как следует изменять управ­ляющее воздействие u(t) в зависимости от изменения x(t) для того, чтобы была достигнута цель управления.

Информацию о математической модели объекта, используемую для проектирования алгоритма функционирования контроллера, называют априорной (начальной) информацией об объекте управления.

Практически рассмотренная структура системы управления может функ­ционировать только при выполнении следующих довольно жестких усло­вий: на объект управления не действуют никакие возмущения; математи­ческая модель объекта известна для любого момента времени с достаточно вы­сокой точностью; требуемый алгоритм управления может быть реализован в контроллере с достаточно высокой точностью.

Нарушение хотя бы одного из этих условий приведет к появлению некон­тролируемого самопроизвольного отклонения управляемой величины от же­лаемого значения, причем с течением времени это отклонение может стать сколь угодно большим.

В этом случае в структуру системы управления приходится вводить доба­вочный канал, по которому контроллер получает информацию о действитель­ном значении управляемой величины в каждый момент времени; это позво­ляет контроллеру при появлении отклонения от желаемого значения (неза­висимо от того, какой причиной оно вызвано) осуществить добавочное изме­нение управляющего воздействия на объект так, чтобы это отклонение было ликвидировано.

Рис. 3.4. Функциональная схема замкнутой системы автоматического

управления.

Соответствующая информационная структурная схема си­стемы приведена на рис.3.4; канал, по которому информацию с выхода си­стемы об изменении управляемой величины подается на вход контроллера, называют каналом обратной связи, или просто обратной связью. На этой схе­ме, помимо управляющего воздействия на объект ц (t), показаны также воз­мущающие воздействия X (t), число которых может быть неопределенно большим; среди них могут быть и недоступные для контроля.

В процессе работы контроллер получает текущую информацию о цели управления, а также информацию о текущем состоянии объекта и среды его функционирования и в соответствии с этой информацией (которая называет­ся рабочей) формирует управляющие воздействия на объект так, чтобы была достигнута цель управления.

В системе с обратной связью (рис. 3.4) имеется замкнутый контур циркуляции сигналов; поэтому такие системы получили также название замкнутых систем управления. Соответственно систему управления без об­ратной связи (рис.3.3) называют разомкнутой.

На практике, особенно при управлении технологическими (и в том числе теплоэнергетическими) процессами, сформулированные выше условия при­менимости разомкнутых систем управления почти никогда не выполняются, так что реальные системы управления обычно имеют в своей структуре зам­кнутые контуры.

В зависимости от характера изменения сигнала задания (задающего воздействия) системы управления принято разделять на три вида:

1. Стабилизации, если задающее воздействие не меняется во времени.

2. Программного управления, если задающее воздействие является зара­нее известной (детерминированной) функцией времени.

3. Зависимого управления, или следящей, если задающее воздействие яв­ляется неопределенной в будущем функцией времени, т. е. такой функцией, характер изменения которой в будущем нельзя прогнозировать или в луч­шем случае можно прогнозировать лишь с определенной степенью вероятно­сти.

Управление называется непрерывным, если осуществляемое контрол­лером изменение управляющего воздействия происходит в непрерывной за­висимости от изменения задающего воздействия и управляемой величины (а возможно, и от производных и интегралов от этих изменений). В случае дискретного управления управляющее воздействие принимает лишь какое-нибудь одно из нескольких возможных значений (в пределе — только из двух возможных значений) либо формируется в дискретные моменты време­ни.

Дискретное управление, в частности, применяется тогда, когда алгоритм управления имеет характер логических условий; в этом случае его называ­ют логическим. Логическое управление чаще всего применяется в пусковых режимах объекта, когда необходимо в определенной последовательности вводить в действие отдельные двигатели, механизмы и т. п. Обычно на прак­тике при управлении сложными технологическим объектами непрерывное и дискретное управления применяются совместно. Так, управление температу­рой пара, вырабатываемого энергоблоком, производится непрерывно измене­нием положения клапана подачи воды на впрыск; однако при сильных изме­нениях нагрузки может понадобиться, кроме того, и переключение в схеме питательных магистралей и т. п.

Соседние файлы в папке АСУ ТП