Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОСНОВЫ ОБЩЕЙ ХИМИИ 1.pdf
Скачиваний:
199
Добавлен:
09.03.2016
Размер:
1.37 Mб
Скачать
l
µ = δ l
Рис. 2.23. Схема образования диполя в гетероядерной молекуле АВ

2.3. Полярность связи. Дипольный момент молекулы

При образовании ковалентной химической связи между разными атомами (гетероядерные молекулы) электронная плотность распределяется не симметрично относительно ядер. В молекуле она сдвинута в сторону ато-

ма, имеющего большее значение электро-

Атом А

Атом В

отрицательности. Вследствие

этого в

χАВ

двухатомной молекуле

центры

тяжести

δ+

δ−

положительных зарядов

ядер и

отрица-

тельных зарядов электронов не совпадают. Возникает система разных по знаку, но одинаковых по величине электриче-

ских зарядов (δ+ и δ−) – электрический диполь (рис. 2.23).

Мерой полярности связи (характеристикой диполя) является диполь-

ный момент µ – произведение величины заряда δ на расстояние между центрами тяжести положительных и отрицательных зарядов (длина диполя l).

Единицей измерения дипольного момента в системе СИ [Кл м] чаще

используется внесистемная единица Дебай (D): 1 D = 3,33 10-30 Кл м.

В гетероядерных молекулах связь всегда полярна, но если число атомов в молекуле три и более, то возникающая при этом система распределения зарядов может привести к тому, что молекула в целом не будет являться диполем – центры тяжести положительных и отрицательных зарядов совпадают. Как правило, это связано с симметричным строением молекулы.

Если молекулу, даже если она не является диполем, поместить в электрическое поле напряженностью Е, происходит разделение центров тяжести зарядов в результате смещения электронов относительно ядер, и смещения атомов относительно друг друга в молекуле. При этом молекула приобретает наведенный (индуцированный) дипольный момент. Способность молекул приобретать в электрическом поле дипольный момент на-

зывается поляризуемостью.

Дипольный момент наведенного диполя пропорционален напряженности электрического поля: µи = α ε0 E , где α – коэффициент поляризуе-

мости (поляризуемость) атома или молекулы, ε0 – электрическая постоянная.

73

Пример.

Молекула

Дипольный мо-

Дипольный момент

Строение

 

мент связи, D

молекулы, D

молекулы

O3

0

0

О

 

О

О

 

 

 

H2O

1,5

1,84

Н

 

О

Н

 

 

 

CO2

2,7

0

С

O

 

 

О

3 . ХИМИЧЕСКАЯ СВЯЗЬ В ТВЕРДЫХ ВЕЩЕСТВАХ

ИЖИДКОСТЯХ

3.1.Агрегатные состояния

Вещества в зависимости от внешних условий (температура и давление) и их химического состава могут существовать в трех основных агрегатных состояниях: газообразном, жидком и твердом. При достаточно низких температурах вещества находятся в твердом состоянии, а при относительно высоких – в жидком и газообразном.

При нагревании происходит, как правило, последовательный переход веществ из твердого в жидкое и газообразное состояние (плавление и испарение), а при охлаждении протекают обратные процессы (конденсация и кристаллизация). Эти переходы осуществляются при определенной температуре (температуре фазового перехода), при этом скачкообразно изменяется молярный объем вещества и энтропия (энергетическая характеристика степени разупорядоченности системы), поглощается или выделяется тепловая энергия (энтальпия фазового перехода). Температура перехода из одного состояния в другое зависит от химической природы вещества и давления. Конкретные значения температур фазовых переходов для различных веществ лежат в широких пределах (табл. 3.1). Необходимо отметить, что при определенных условиях возможен фазовый переход твердое состояние – газ (сублимация-кристаллизация).

74

 

 

 

 

 

 

 

 

 

Таблица 3 . 1

Температуры (°С), энтальпия (Н0, кДж/моль) и энтропии (S0, Дж/моль К) фазо-

 

вых переходов некоторых веществ при атмосферном давлении

 

 

 

 

 

 

 

 

 

 

 

 

 

Ве-

Тип кристалла

 

 

 

 

Фазовый переход

 

 

 

 

щест-

 

 

Плавление -

 

 

 

Кипение –

 

во

 

кристаллизация

 

конденсация

 

 

 

tпл, °С

 

Н0пл,

 

S0 пл,

tкип, °С

 

Н0исп,

 

S0исп,

N2

Молекулярный

-210

 

0,721

 

11,4

-195,8

 

5,59

 

72,4

CH4

-//-

-182,5

 

0,938

 

10,4

-164

 

8,18

 

75,0

H2O

-//-

0

 

6,013

 

22,0

100

 

40,683

 

109,07

C6Н6

-//-

5,5

 

9,837

 

35,3

80,1

 

30,76

 

87,1

S(β)

-//-

119,3

 

1,72

 

4,4

445

 

9,2

 

12,8

Si

Ковалентный

1415

 

49,8

 

29,5

3300

 

356

 

99,6

AgCl

Ионный

455

 

13,2

 

18,1

1557

 

184

 

100,5

NaCl

-//-

801

 

28,2

 

26,3

1490

 

138

 

78,3

MgF2

-//-

1263

 

58

 

37,8

2270

 

274

 

107,7

Na

Металлический

97,9

 

2,60

 

7,01

886

 

90.1

 

77,7

Ag

-//-

960,5

 

11,3

 

9,2

2167

 

251

 

102,9

W

-//-

3420

 

35,1

 

9,5

5680

 

770

 

129,3

Жидкое и твердое агрегатные состояния относят к конденсированному состоянию вещества. Оно отличается от газообразного тем, что энергия взаимодействия между частицами, образующими вещество, сравнима по величине или превышает энергию их теплового движения. Это приводит к тому, что среднее расстояние между частицами (между центрами частиц) в газе при нормальных условиях составляет величину ~ 10 их диаметров, тогда как в конденсированном состоянии оно сравнимо с их диаметром. Молярный объем любого газа при нормальных условиях равен 22,4 л/моль, тогда как молярные объемы твердых веществ и жидкостей примерно в 103 раз меньше (0,01–0,05 л/моль).

Пример. Расчет средних размеров пространства, занимаемого одной частицей при атмосферном давлении.

Газ Жидкость, кристалл

 

d

d

 

 

a

 

a

V = a3 – объем пространства a – ребро куба

d – средний диаметр частицы

75

Газ.

1

моль

газа при нормальных

условиях

занимает

объем

Vν = 22,4 л/моль и содержит 6,02 1023 молекул (число Авогадро).

 

Средний размер пространства, занимаемого одной частицей:

 

V =

22,4 10

-3

 

 

 

 

 

0

 

= 3,7 10-26 м3 , a = 3 V = 3 3,7 1026 = 3,3 10-9 м = 33А.

 

 

6,02 1023

 

 

 

 

 

 

Размер молекулы азота (две длины связи) d N2 3 Ǻ.

 

 

Жидкость.

 

1

моль

жидкого брома

(Br2)

занимает

объем

V =

M

=

160

= 51,2 cм3 .

М=160 г/моль

молярная масса

брома,

ν

ρ

 

3,12

 

 

 

 

 

 

 

 

ρ=3,12 г/см3 – плотность жидкого брома, Vν – молярный объем жидкого брома.

Средний размер пространства, занимаемого одной частицей:

V =

51,2

10

-6

= 8,5 10-29 м3

, a = 3 V = 3

8,5 1029 = 4,4 10-10

0

 

м = 4,4 А .

 

1023

6,02

 

 

 

 

 

 

 

Размер молекулы брома (две длины связи) d Br2 4,56 Ǻ.

 

Кристалл. 1

моль металлического серебра занимает объем

 

 

 

 

 

V =

M =

 

108

=

10,3 cм3.

 

 

 

 

 

10,50

 

 

 

 

 

ν

ρ

 

 

 

М=108 г/моль – молярная масса серебра, ρ=10,50 г/см3 – плотность серебра, Vν – молярный объем серебра.

Средний размер пространства, занимаемого одной частицей:

V =

10,3

10

-6

=1,7 10-29 м3 , a = 3 V = 3 1,7 1029

= 2,6 10-10

0

 

м = 2,6 А.

 

6,02

1023

 

 

 

Размер атома серебра (два металлических радиуса) d Ag 2,68 Ǻ.

В газах частицы находятся в броуновском движении, при этом отсутствуют ближний и дальний порядок в положении частиц. Газ не имеет собственного объема и, соответственно, формы. В жидкостях броуновское движение осложнено наличием более или менее устойчивого ближнего порядка в положении частиц относительно друг друга за счет возникновения химических связей между отдельными частицами. Жидкость имеет собственный объем, но из-за слабого межмолекулярного взаимодействия под действием силы тяжести принимает форму сосуда, в котором она находится. В твердом состоянии вещества энергия взаимодействия между частицами намного превышает энергию теплового движения, что приводит к фиксированию положений частиц в пространстве, вокруг которых они совершают колебательные и вращательные движения. Это определяет наличие у твердых тел собственной формы и объема и большое сопротивление сдвигу.

76

Сравнение энергетических характеристик фазовых переходов свидетельствует о существенно меньшей перестройке вещества при плавлении, чем при испарении. Как видно из табл. 3.1, для всех кристаллов с различным типом химической связи теплота (энтальпия) плавления много меньше теплоты испарения. Энтропия фазового перехода, характеризующая изменение степени упорядоченности системы, также для плавления много меньше, чем для испарения.

В газообразном состоянии, где присутствуют слабо или совсем не взаимодействующие между собой молекулы вещества, химическая связь внутри них рассматривается с использованием моделей «классической» ковалентной связи.

При рассмотрении конденсированного состояния вещества химическая связь описывается с использованием моделей ковалентной, ионной и металлической связи. При этом необходимо принимать во внимание близкое расположение частиц, образующих систему. Это обстоятельство в ряде случаев (жидкости, молекулярные кристаллы) обусловливает необходимость учитывать существенный вклад межмолекулярного взаимодействия в энергию химических связей.

Необходимо отметить, что целый ряд веществ может не иметь одного из агрегатных состояний. Чаще всего это относится к жидкому и газообразному состояниям. Данное обстоятельство связано с соотношением между энергией, необходимой для перевода вещества из одного агрегатного состояния в другое, и энергией, достаточной для разрыва внутримолекулярных химических связей. Например, во многих нерастворимых в воде гидроксидах металлов при нагревании раньше протекает реакция дегидратации (Cu(OH)2CuO + H2O), а затем происходит плавление вещества.

3.2.Межмолекулярное взаимодействие

Как было отмечено выше, в конденсированном состоянии вещества на величину энергии химической связи существенно влияют межмолекулярные взаимодействия. Они связаны с электростатическим взаимодействием зарядов, возникающих в результате нарушения симметрии распределения электронной плотности в молекулах.

3.2.1.Межмолекулярные взаимодействия (силы Ван-дер-Ваальса)

В конденсированных фазах (жидкость, твердое тело) расстояние между молекулами соизмеримо с размерами самих молекул. На таких малых расстояниях проявляют себя силы электростатического взаимодействия диполей, как постоянных, так и наведенных. При этом энергия системы понижается.

77

Межмолекулярные взаимодействия характеризуются отсутствием обмена электронами между частицами, отсутствием специфичности и насыщаемости. Энергия межмолекулярного взаимодействия сравнительно невелика, однако она вносит существенный вклад в энергетическое состояние системы, определяя в значительной степени физические и химические свойства вещества.

На сравнительно больших расстояниях r между молекулами, когда электронные оболочки не перекрываются, действуют только силы притяжения. При этом возможны три механизма возникновения сил притяжения.

1. Ориентационный эффект (диполь – дипольное взаимодействие). Если молекулы полярны, то проявляется электростатическое взаимодействие двух постоянных диполей. Полярные молекулы ориентируются относительно друг друга противоположно заряженными частями, энергия притяжения прямо пропорциональна дипольным моментам (µi2) и обратно пропорциональна расстоянию между ними (r6). Повышение температуры ослабляет это взаимодействие, так как тепловое взаимодействие стремится

нарушить взаимную ориентацию молекул.

2. Индукционный эффект (взаимодействие диполь – наведенный диполь).

Неполярные молекулы под действием поля полярной молекулы поляризуются, возникает индуцированный диполь. Индуцированный дипольный момент прямо пропорционален поляризуемости молекул (µи α µд). Энергия притяжения таких молекул прямо пропорциональна дипольным моментам (α µд2) и обратно пропорциональна расстоянию между ними (r6). Так как наведение диполей происходит при любом пространственном расположении молекул, индукционный эффект от температуры не зависит.

3. Дисперсионный эффект (взаимодействие мгновенных диполей).

В отличие от ориентационного и индукционного взаимодействия дисперсионный эффект имеет объяснение только в рамках квантовой механики. Его возникновение можно представить следующим образом: в процессе движения электронов распределение зарядов внутри атомов может стать несимметричным, что приводит к образованию «мгновенных диполей», которые притягиваются друг к другу. Более того, при сближении молекул движение электронов перестает быть независимым и возникает «самосогласованная» система взаимодействующих мгновенных диполей. Энергия притяжения прямо пропорциональна поляризуемостям молекул (αi) и обратно пропорциональна расстоянию между ними (r6).

Дисперсионный эффект, как наиболее универсальный, проявляется при взаимодействии как полярных, так и неполярных молекул. Причем для неполярных молекул и молекул с небольшим дипольным моментом он является основным.

78

Индукционный и ориентационный эффекты играют существенную роль при взаимодействии полярных молекул. Для молекул с большим значением дипольного момента основным является ориентационный эффект. Индукционный эффект обычно невелик и становится значительным лишь тогда, когда полярные молекулы сосуществуют с сильно поляризующимися молекулами (табл. 3.2).

На малых расстояниях между молекулами, когда их электронные оболочки сильно перекрываются, электростатическое отталкивание ядер и электронов становится больше их взаимного притяжения. Энергия отталкивания гораздо сильнее зависит от расстояния (r12), чем энергия притяжения. На больших расстояниях межмолекулярное взаимодействие определяется силами притяжения, а на малых силами отталкивания.

Таблица 3 . 2

Относительный вклад каждой составляющей в энергию межмолекулярного взаимодействия для различных молекул

 

Ориентацион-

Индукционное

Дисперсион-

µ, Кл м

 

α, м3

Молекула

ное

 

ное

Диполь-

 

Поляри-

 

 

 

 

 

%

 

ный

 

зуемость

 

 

 

момент

 

 

 

 

 

 

 

×1030

CO

< 0,01

0,1

99,9

0,33

 

1,926

HCl

14,4

4,2

81,4

3,47

 

2,561

NH3

44,9

5,3

49,7

4,94

 

2,145

H2O

76,9

4,0

19,0

6,10

 

1,444

3.2.2.Водородная связь

Особым типом межмолекулярного взаимодействия является водородная связь. Она возникает между молекулами, которые содержат в своей структуре атом водорода и малый по размерам атом элемента с большим значением электроотрицательности (кислород, фтор, азот и др.). Поскольку разница в электроотрицательностях водорода и этих элементов велика, то связь сильно поляризована, на атомах возникают сравнительно большие отрицательные и положительные заряды. В то же время небольшой размер этих атомов позволяет им близко подходить друг к другу при ди- поль-дипольном взаимодействии. Поэтому энергия ориентационного взаимодействия значительно больше (примерно на порядок), чем в других случаях. Кроме того, энергия связи существенно увеличивается за счет частичного образования ковалентной составляющей связи между взаимодействующими атомами соседних молекул по донорно-акцепторному механизму. 1s-орбиталь водорода частично оголена благодаря сильной поляризации связи (это еще не Н+, но уже и не Н0), а на электроотрицательном атоме имеются неподеленные электронные пары.

79

Оба эти фактора приводят к увеличению энергии связи по сравнению с энергией межмолекулярного взаимодействия. Энергия водородной связи составляет величину порядка 100 кДж/моль, энергия межмолекулярного взаимодействия (силы Ван-дер-Ваальса) – 10-20 кДж/моль.

При конденсации молекул, способных к образованию водородных связей, их взаимное расположение будет определяться как направлением в пространстве атомов водорода внутри молекулы, так и направлением в пространстве электронных орбиталей электроотрицательного атома, связанного с атомом водорода соседней молекулы.

Водородная связь определяет многие физические и химические свойства веществ, в частности увеличивается температура плавления и кипения, изменяется плотность вещества. Особую роль водородная связь играет в биохимии, органические молекулы (в том числе и полимеры), содержащие H-O, H-N связи, образуют большое число водородных связей.

Примеры. Вода H2O.

В конденсированном состоянии каждая молекула воды может иметь четыре водородные связи: две между атомом кислорода (функции донора) и атомами водорода двух соседних молекул воды; еще две – за счет двух атомов водорода (функция акцептора). В кристаллическом состоянии образуется правильная алмазоподобная структура. В узлах располагаются большие атомы кислорода, которые связаны между собою через атом водорода. В жидком состоянии часть водородных связей разорвана (рис.3.1).

Нδ+

Нδ+ Длина связи О

Н

0,99 Ǻ

 

Длина связи О

Н

1,77 Ǻ

Оδ

Угол связи 104,5о

 

Оδ

 

 

Нδ+

Нδ+ Нδ+ Нδ+

 

 

Оδ

Рис. 3.1. Схема образования тетраэдрической пространственной структуры воды вкристаллическом и жидком состояниях: - ковалентная связь, - водородная связь

Фтористый водород HF.

В газообразном состоянии при невысоких температурах, за счет образования водородных связей, образуются ассоциаты (HF)2, (HF)6.. В конденсированном состоянии, в частности в твердом, HF образует зигзагообразные цепи (рис. 3.2).

80

Соседние файлы в предмете Химия