Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovoe_1.docx
Скачиваний:
6005
Добавлен:
13.03.2016
Размер:
30.46 Mб
Скачать

5. Стандартная энтальпия образования вещества, стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции. Закон Гесса. Формулировка. Математическое выражение. Следствия из закона Гесса.

Стандартная энтальпия сгорания ΔHoсгор – тепловой эффект реакции сгорания одного моля вещества до образования высших оксидов. Для органических веществ –до CO2(г) и H2O(ж). Теплота сгорания негорючих веществ принимается равной нулю. Теплота сгорания топлива характеризует его теплотворную способность.

Стандартная энтальпия образования вещества (ΔfH0) – увеличение или уменьшение энтальпии, сопровождающее образование 1 моль вещества из простых веществ, при условии, что все участники реакции находятся в стандартном состоянии

Стандартная энтальпия сгорания вещества (ΔсH0) – уменьшение энтальпии при окислении в избытке кислорода 1 моль вещества, взятого в стандартном состоянии, до конечных продуктов окисления.

Закон Гесса – энергия не создаётся и не уничтожается, а лишь переходит из одного вида энергии в другой.

Закон Гесса

Тепловой эффект реакции зависит только от природы и состояния исходных вещ-в и не зависит от пути, по которому реакция протекает

Следствие 1. Тепловой эффект химической реакции равен разности сумм теплот образования(ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрическиекоэффициенты (ν):

ΔHof,i - стандартная энтальпия образование веществ

vi – стехиометрические коэффициенты

Следствие 2. Тепловой эффект химической реакции равен разности сумм теплот сгорания(ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

ΔHoс,i- стандартная энтальпия сгорания веществ

vi – стехиометрические коэффициенты

Следствие 3. Энтальпия реакции равна разности сумм энергий связей Eсв исходных и конечных реагентов с учетом их стехиометрических коэффициентов.

В ходе химической реакции энергия затрачивается на разрушение связей в исходных веществах (ΣEисх) и выделяется при образовании продуктов реакции (–ΣEпрод). Отсюда

ΔH° = ΣEисх – ΣEпрод

Следовательно, экзотермический эффект реакции свидетельствует о том, что образуются соединения с более прочными связями, чем исходные. В случае эндотермической реакции, наоборот, прочнее исходные вещества.

При определении энтальпии реакции по энергиям связей уравнение реакции пишут с помощью структурных формул для удобства определения числа и характера связей.

Следствие 4. Энтальпия реакции образования вещества равна энтальпии реакции разложения его до исходных веществ с обратным знаком.

Следствие 5. Энтальпия гидратации равна разности энтальпий растворения безводной соли (ΔHoраств.б/с)и кристаллогидрата (ΔHoраств.крист)

6.Второе начало термодинамики. Формулировка. Обратимые и необратимые в термодинамическом смысле процессы. Энтропия как критерий возможности протекания самопроизвольных процессов.

Второе начало термодинамики: В изобарно-изотермических условиях (р, Т = const) в системе самопроизвольно могут протекать только такие процессы, в результате которых энергия Гиббса системы уменьшается (ΔG < 0). В состоянии равновесия G = const, G = 0

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы.

Энтропия – энтропия – функция состояния, приращение которой ΔS равно теплоте Qмин подведённой к системе в обратимом изотермическом процессе, делённой на абсолютную температуру T, три которой осуществляется процесс: ΔS = Qмин/ T или мера вероятности пребывания системы в данном состоянии – мера неупорядоченности системы.

7. Энергия Гиббса – главный критерий возможности протекания самопроизвольных про­цессов. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах; роль энтальпийного и энтропийного факторов.

Критериями направления самопроизвольного протекания необратимых процессов являются неравенства ΔG < 0 (для закрытых систем), ΔS > 0 (для изолированных систем).

Если величина ΔG имеет отрицательный знак (ΔG < 0), то реакция самопроизвольно может протекать только в прямом направлении. Причем абсолютное значение разности ΔH – TΔS = ΔG будет определять движущую силу данного процесса.

Если же ΔG > 0, то в условиях, для которых были измерены ΔH и TΔS, в прямом направлении данная реакция протекать не может. Зато осуществимой окажется обратная реакция, для которой ΔG будет иметь отрицательное значение.

Реакции, для которых ΔH < 0, а ΔS > 0, могут самопроизвольно протекать в прямом направлении при любых температурах, т.к. ΔG у них всегда будет меньше нуля. Примером такой реакции может служить гидролиз пептидов или белков.

Если для химической реакции ΔH > 0, а ΔS < 0, то ее самопроизвольное протекание в прямом направлении всегда неосуществимо, т.к. энергия Гиббса в данном случае возрастает. Примером такой реакции может служить процесс фотосинтеза – образование глюкозы и кислорода из углекислого газа и воды, – который невозможен без участия солнечной энергии.

В случае ΔH > 0 и ΔS > 0 самопроизвольному протеканию реакции в прямом направлении способствует энтропийный фактор. При низких температурах отрицательное значение ΔH – TΔS может быть невозможно, но при нагревании – оно возможно и реакция становится осуществимой в прямом направлении. Например, тепловая денатурация белковых молекул.

Если ΔH < 0 и ΔS < 0, то отрицательное значение ΔG такой химической реакции наблюдается только при достаточно низких температурах.

При вычислении ΔG в химической реакции можно использовать следствие из закона Гесса, применяемое для расчета ее теплового эффекта (изменения энтальпии). В данном случае оно будет звучать следующим образом.

В ходе самопроизвольного процесса в закрытых системах G уменьшается до определенной величины, принимая минимально возможное для данной системы значение Gmin. Система переходит в состояние химического равновесия (ΔG= 0). Самопроизвольное течение реакций в закрытых системах контролируется как энтальпийным (ΔrH), так и энтропийным (TΔrS) фактором. Для реакций, у которых ΔrH< 0 иΔrS> 0, энергия Гиббса всегда будет убывать, т.е.ΔrG< 0, и такие реакции могут протекать самопроизвольно при любых температурах

В изолированных системах энтропия приобретает максимально возможное для данной системы значение Smax; в состоянии равновесияΔS= 0

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. В самопроизвольной реакции:

∆G<0  (G2-G1<0)

∆S>0   (S2-S1>0)    реакция пойдет  → ∆G>0  

∆S<0   реакция пойдет  ←

Формула для I и II т/д: ∆Gт=∆H0хр - Т∆S

Энтальпийный и энтропийный факторы Из приведенного выражения следует, что самопроизвольное течение реакции может контролироваться как энтальпийным (∆H), так и энтропийным фактором (T∆S). Очевидно, что для реакций, характеризующихся ∆Hr< 0 и ∆Sr> О, энергия Гиббса должна обязательно убывать, т. е. ∆Gr< 0, и такие реакции могут протекать самопроизвольно при любых температурах, так как оба фактора способствуют протеканию процесса. Пример такой реакции — гидролиз белка. Наоборот, при ∆Hr> 0 и ∆Sr< 0 самопроизвольное течение реакций всегда невозможно, так как энергия Гиббса должна обязательно возрастать. Оба фактора препятствуют протеканию реакции. Пример — фотосинтез, т. е. образование глюкозы и кислорода из углекислого газа и воды.

Несогласованное действие факторов наблюдается в двух случаях:

1) ∆Hr> 0 и ∆Sr> 0 — самопроизвольному протеканию реакции способствует энтропийный фактор, отрицательное значение изменения энергии Гиббса возможно при соотношении |∆Sr |> |∆Hr|, т. е. при достаточно высоких температурах. Примером процессов этого типа является тепловая денатурация белков;

2) ∆Hr< О и ∆Sr< О — благоприятствующим фактором является энтальпийный, соотношение AGT< 0 наблюдается при |∆Hr| >|∆Sr |, т. е. при достаточно низких температурах. Пример процессов этого типа — гидратация белков.

8 . Термодинамические условия равновесия. Стандартная энергия Гиббса образования вещества, стандартная энергия Гиббса биологического окисления вещества. Стандартная энергия Гиббса реакции. Примеры экзергонических и эндергонических процессов, протекающих в организме. Принцип энергетического сопряжения.

Под стандартной энергией Гиббса биологического окисления ΔG°, понимают изменение энергии Гиббса при реакции биологического окисления 1 моль вещества, находящегося в стандартном состоянии.Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии

Принцип энергетического сопряжения:

Сопряженные реакции – это реакции, в которых протекание одной реакции обусловлено протеканием другой, невозможной в отсутствии первой. Принцип энергетического сопряжения заключается в том, что энергия необходимая для протекания эндергонической реакции поступает за счет осуществление экзэргонической реакции , причем в двух реакциях присутствует общее веществ- интермедиан.

  1. Химическое равновесие. Обратимые и необратимые по направлению реакции. Термодинамические условия равновесия в изолированных и закрытых системах. Константа химического равновесия.

11.Химическая кинетика как основа для изучения скоростей и механизмов биохимических процессов. Скорость реакции, средняя скорость реакции в интервале, истинная скорость. Факторы, влияющие на скорость реакции.

Химическая кинетика изучает скорости химических реакций, их зависимость от различных факторов и механизмы реакций. Последо­вательность и характер стадий химических реакций называют меха­низмом реакции.

Факторы влияющие на протекание реакции

В организме человека протекают тысячи ферментативных реакций, проходящих в живой клетке. Однако в многостадийной цепи процессов достаточно велика разница между скоростями отдельных реакций. Так, синтезу в клетке молекул белка предшествует, по крайней мере, еще две стадии: синтез транспортной РНК и синтез рибосом. Но время, за которое удваивается концентрация молекул т-РНК, составляет 1,7 мин., молекулы белка - 17 мин., а рибосом - 170 мин. Скорость суммарного процесса медленной (лимитирующей) стадии, в нашем примере - скорость синтеза рибосом. Наличие лимитирующей реакции обеспечивает высокую надежность и гибкость управления тысячами реакций, происходящих в клетке. Достаточно держать под наблюдением и регулировать лишь наиболее медленные из них. Такой способ регулирования скорости многостадийного синтеза носит название принципа минимума. Он позволяет существенно упростить и сделать более надежной систему авторегулирования в клетке.

Скорость реакций в зависимости от молекулярности будет выражаться уравнениями: а) V = к • СА - для мономолекулярной реакции; б) V = к • СА • Св или в) V = к • С2А - для бимолекулярной реакции; г) V = к • С • Св • С э д) V = к • С2А • Св или е) V = k • С3А- для тримолекулярной реакции.

12. Классификации реакций, применяющиеся в кинетике: реакции, гомогенные, гетерогенные и микрогетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные). Молекулярность элементарного акта реакции. Кинетические уравнения. Порядок реакции. Период полупревращения

Микрогетерогенные реакции –

Молекулярность реакции– это количество молекул, которые принимают участие единовременно в одном акте столкновений.

Молекулярность можно определить, лишь установив механизм реакции. В зависимости от числа реагирующих молекул (частиц), участвующих в элементарном акте, различают одномолекулярные (мономолекулярные), двухмолекулярные, тримолекулярные реакции.

К одномолекулярнымреакциям типа А→Р относятся процессы распада молекулы на более простые составные части и реакции изомеризации.

Двухмолекулярными называются элементарные реакции вида: А+В→Р и 2А→Р (Н2+J2=2HJ,HJ+HJ=H2+J2,CH3COOCH3+H2O=CH3COOH+CH3OHи т.д.).

Значительно реже встречаютсятрехмолекулярныереакции А+2В→Р или 3А→Р. Во всех случаях вид и количество образующихся продуктов реакции не имеет значения, так как молекулярность определяется только числом молекул веществ, реагирующих в элементарном акте.

Порядок реакции устанавливается экспериментально.

Молекулярность и порядок реакции могут совпадать, а могут и различаться. 

Молекулярность и порядок реакции совпадаюттолько для простых реакций, протекающих только в одну элементарную стадию без участия посторонних молекул.

Молекулярность и порядок реакции не совпадают в трех основных случаях:

1) для сложных реакций;

2) для гетерогенных реакций;

3) для реакций с избытком одного из реагирующих веществ.

Период полупревращения– это время, в течение которого прореагирует половина взятого вещества.

Кинетическое уравнение выражает зависимость скорости хим. реакции от концентраций компонентов реакционной смеси

Молекулярность-число молекул, реагирующих в в одном элементарном химическом акте.

Молекулярность реакции определяется числом молекул, вступающих в химическое взаимодействие в элементарном акте реакции. По этому при­знаку реакции разделяются на мономолекулярные, бимолекулярные и тримолекулярные.

Тогда реакции типа А —>В будут являться мономолекулярными, например:

а) С16Н34 (t°C) —>CgH18 + С8Н16 - реакция крекинга углеводородов;

б) CaC03 (t°C) —>СаО + С02 - термическое разложение карбоната кальция. Реакции типа А + В —> С или 2А —> С - являются бимолекулярными, например: а) С + 02 -> С02; б) 2Н202 -> 2Н20 + 02 и т. д.

Тримолекулярные реакции описываются общими уравнениями типа:

а) А + В + С Д; б) 2А + В Д; в) 3А Д.

Например: а) 2Н2 + 0220; б) 2NO + Н2N20 + Н20.

Скорость реакций в зависимости от молекулярности будет выражаться уравнениями: а) V = к • СА - для мономолекулярной реакции; б) V = к • СА • Св или в) V = к • С2А - для бимолекулярной реакции; г) V = к • С • Св • С э д) V = к • С2А • Св или е) V = k • С3А- для тримолекулярной реакции.

Нередко молекулярность реакции трудно установить, поэтому используют более формальный признак - порядок химической реакции.

Порядок реакции равен сумме показателей степеней концентраций в уравнении, выражающем зависимость скорости реакции от концентрации реагирующих веществ (кинетическом уравнении).

Порядок реакции чаще всего не совпадает с молекулярностью ввиду того, что механизм реакции, т. е. "элементарный акт" реакции (см. определение признака молекулярности), трудно установить.

Рассмотрим ряд примеров, иллюстрирующих указанное положение.

  1. Скорость растворения кристаллов описывается уравнениями кинетики нулевого порядка, несмотря на мономолекулярность реакции: AgCl(TB) —>Ag+ + CI", V = k • C(AgCl(TBp= k'C(AgCl(ra}) - p - плотности и является постоянной величиной, т. е. скорость растворения не зависит от количества (концентрации) растворяемого вещества.

  2. Реакция гидролиза сахарозы: СО + Н20 —> С6Н1206(глюкоза) + С6Н1206 (фруктоза) является бимолекулярной реакцией, но ее кинетика описывается кинетическим уравнением первого порядка: V=k*Ccax, так как в условиях опытов, в том числе и в организме, концентрация воды есть величина постоянная С(Н20) - const.

  3. Реакция разложения водородпероксида, протекающая с участием катали­заторов, как неорганических ионов Fe3+, Cu2+ металлической платины, так и био­логических - ферментов, например каталазы, имеет общий вид:

202 —> 2Н20 + О э т. е. является бимолекулярной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]