Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Obmen_belkov_i_aminokislot_2007.pdf
Скачиваний:
47
Добавлен:
15.03.2016
Размер:
370.8 Кб
Скачать

 

Г А А

А Ц Т

Ц Г Г

A T T

Нетранскрибируемая

 

ДНК

|

|

|

|

|

|

|

|

|

|

|

|

 

цепь

 

|

|

|

|

|

|

|

|

|

|

|

|

 

…Кодоны ДНК

 

ЦТ Т

Т Г A

Г Ц Ц

Т A A

 

 

|

|

|

|

|

|

|

|

|

|

|

|

 

…Кодоны мРНК

мРНК

Г А А

А Ц У

Ц Г Г

A У У

 

 

 

 

 

 

 

 

 

Белок

Глутами-

Треонин

Аргинин

Изолейцин

 

…Аминокислотная

 

новая

 

 

 

 

 

 

 

 

 

 

последовательность

 

кислота

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Биосинтез белков – трансляция

Сборка полипептидной цепи белка из составляющих ее аминокислот включает четыре стадии: активацию и отбор аминокислот; инициацию синтеза полипептидной цепи; элонгоцию (удлинение) полипептидной цепи; терминацию синтеза полипептидной цепи.

Первая стадия – активация – это превращение аминокислоты в аминоацил – тРНК.

Взаимодействие тРНК с аминокислотами – ферментативный процесс, приводящий к образованию ковалентной сложноэфирной связи между аминокислотой и тРНК.

синтетаза

Аминокислота + АТФ + т РНК–––––→ Аминоацил – тРНК + АМФ+ Н4Р2О7

Известно не менее двадцати различных аминоацил – тРНК – синтетаз, каждая из которых катализирует реакцию только одной из 20 аминокислот с тРНК, соответствующей этой аминокислоте. Каждая синтетаза высокоспецифична, в ее активном центре находится участок, комплементарный какой-то части молекулы одной из тРНК. Это позволяет каждой синтетазе соединять определенную аминокислоту с соответствующей тРНК.

Вторая стадия синтеза белка – инициация – начинается с образования инициирующего комплекса.

Поступившая из ядра в цитоплазму мРНК соединяется с малой (40 S) субъединицей рибосомы и инициирующим ей аминоацилом – тРНК. Затем к этому комплексу присоединяется большая (60 S) субъединица рибосомы.

Инициирующий аминоацил – тРНК – содержит аминокислоту метионин

– Меt – тРНК. В дальнейшем Меt – тРНК взаимодействует своим триплетом нуклеотидов, комплементарным кодом АУГ или ЦУЦ на мРНК. Эти два кодона на мРНК называют инициирующими. С одного из них начинается синтез любого белка.

Третья стадия – элонгация. Процесс элонгации начинается со связывания аминоацил – тРНК – с инициирующим комплексом, соответствующим первому кодону мРНК, следующему за инициирующим кодоном. Кодон мРНК должен спариваться с антикодоном, т.е. с таким триплетом в молекуле тРНК, кото-

22

рый комплементарно ему соответствует. Эта тРНК взаимодействует затем не только с мРНК, но и с определенными участками рибосомы – центрами связывания – пептидильным (донорным) и акцепторным. В процессе связывания аминоацила – тРНК– расходуется одна молекула ГTФ. Затем начинается образование пептидной связи между инициаторным метионином из Меt-тРНК и первой в будущей полипептидной цепи аминокислотой, включенной в амино- ацил-тРНК. Образовавшийся дипептидил – тРНК – связан с кодоном, соответствующим аминокислоте, и центром связывания рибосомы.

Затем происходит транслокация – перемещение рибосомы относительно мРНК и дипептидил-тРНК. В результате этого перемещения дипептидил-тРНК оказывается в пептидильном центре рибосомы, а тРНК метионина освобождается из комплекса. На транслокацию расходуется две молекулы ГTФ.

Дальнейшее удлинение пептидной цепи происходит путем повторения этих фаз, но теперь уже присоединяется аминоацетил-тРНК, соответствующий второму коноду мРНК, в результате чего образуется трипептид и т.д.(рис 3):

 

РПЦ

РПЦ

РПЦ

 

РПЦ

ЗПЦ

 

 

 

БС

 

 

 

МС

 

ИП1

 

Т1

 

 

 

БС

Т2

 

ИП2

 

 

 

МС

 

 

 

 

 

5/

3/

Рисунок 3 – Схема действия полирибосомы, состоящей из четырех рибосом

МС– малая субчастица рибосомы (40S); БС – большая частица рибосомы (60S); РПЦ и ЗПЦ – растущая и завершенная полипептидные цепи; ИП1 и ИП2 – кодоны – инициаторы и участок, узнаваемый рРНК; Т1 и Т2 – кодоны–термина- торы, прерывающие синтез белка.

Остаток аминокислоты инициаторного метионина, участвовавший в стадии инициации и занимающий в растущей пептидной цепи N-концевое положение, отщепляется в стадии элонгации.

Следует отметить, что метионин, встраиваемый не в начало цепи (инициаторный метионин), а внутри – переносится другой тРНК.

Четвертая стадия – терминация. Удлинение пептидной цепи продолжается до тех пор, пока на пути рибосомы не встретится один из терминальных триплетов мРНК. Это триплеты УAA, УAГ или УГA, сигнализирующие окончание синтеза полипептидной цепи. В узнавании этих терминальных конодов участвуют внерибосомные белки – факторы терминации или факторы высвобождения белка, под действием которых происходит гидролитическое расщепле-

23

ние связи между полипептидом и последней тРНК, и высвобождается полипептидная цепь готового белка. После освобождения полипептидной цепи фактор высвобождения, а также мРНК диссоциируют. У растений обнаружен лишь один фактор.

Вторичная и третичная структуры белков формируются в процессе трансляции по мере удлинения пептидной цепи. Как уже отмечалось в разделе «Белки», пространственные структуры белковой молекулы определяются первичной структурой ее полипептидной цепи. В результате формирования вторичной и третичной структур образуются активные центры белков.

В то же время в процессе трансляции и после ее завершения не всегда формируется биологически активный белок. В ряде случаев сформированные молекулы белков-ферментов неактивны, и переход их в активную форму возможен после отщепления части полипептидной цепи путем частичного гидролиза. Так, например, в созревающих семенах ферменты протеазы синтезируются в неактивной форме, они не способны гидролизовать собственные запасные белки до прохождения частичного гидролиза полипептидной цепи молекулы фермента. Только после частичного гидролиза, в результате которого отщепляются трипептид, протеаза переходит в активную форму и начинает гидролизовать запасные белки семян. Продукты гидролиза белков поступают в прорастающий зародыш семени.

Присоединение к молекуле белка простетической группы – кофермента или металла, объединение олигомерных белков в четвертичную структуру также происходят уже после завершения процесса трансляции. В некоторых белках после завершения синтеза полипептидной цепи происходит модификация аминокислотных остатков, например, присоединение дополнительных метильных групп, йодирование, окисление двух остатков цистеина с образованием дисульфидного мостика, гидроксилирование остатков пролина, присоединение сахаров к остатку аспарагина при образовании гликопротеинов, фосфорилирование гидроксильных групп серина или тирозина у некоторых ферментов, присоединение КоА в ацилпереносящем белке синтетазы жирных кислот.

Вреальной живой клетке синтез белков протекает не на одной рибосоме,

ана комплексе или кластере рибосом – полисоме. Каждая стадия трансляции (инициация, элонгация и терминация) осуществляется каждой рибосомой. Обычно кластеры содержат от 3 до 20 рибосом, но очень большие молекулы мРНК, состоящие из тысяч нуклеотидов, могут образовывать комплексы, содержащие от 50 до 100 рибосом. Скорость синтеза полипептида очень высока: синтез пептида из 100 аминокислот занимает около 2 минут.

Общая схема процесса синтеза белка может быть представлена в следующем виде:

24

ДНК

Транскрипция

Пре-мРНК (в стадии "созревания")

Транспорт из ядра в цитоплазму

мРНК

Трансляция

Полипептид

Посттрансляционные

модификации

Функционально активный белок

3.6 Понятие о мутациях

Выше указывалось, что состав ДНК в процессе репликации не меняется. Копирование ДНК создает молекулярную основу одного из фундаментальных свойств жизни – наследственность. Противоположное свойство – изменчивость

– столь же существенно, поскольку наряду с наследственностью обеспечивает возможность естественного отбора и биологической эволюции.

Молекулярную основу изменчивости организмов составляют наследственные изменения первичной структуры ДНК – мутации, которые могут происходить из-за целого ряда причин. Например, имеющиеся азотистые основания могут быть заменены другими их аналогами или вовсе выпасть из молекулы. Совершенно очевидно, что если в результате таких ошибок образуется ДНК, не характерная для данного вида, то она после самоудвоения дает начало новым нехарактерным молекулам, что ведет к синтезу измененного «неправильного белка» или к прекращению синтеза белка, т.е. к мутациям.

Но случайные ошибки и соответственно спонтанные мутации встречаются исключительно редко. Количество мутаций можно увеличить искусственно, если подвергнуть организмы (или их клетки) действию ионизирующей радиации, действию УФ-лучей или же обработать определенными химическими веществами, которые называют мутагенами.

Мутагены – это чужеродные химические соединения увеличивающие число мутаций. Некоторые мутагены химически изменяют структуру пуринов или пиримидинов, приводя к изменению характера спаривания оснований. Сравнительно простой пример дает мутагенное превращение цитозина в урацил (окислительное дезаминирование), которое можно вызвать, действуя на клетку азотной кислотой (рис 4):

1)превращение цитозина в урацил;

2)расхождение цепей материнской ДНК и синтез на них комплементарных цепей. Одна из дочерних клеток получает ДНК с парой А–У в отличие от

25

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]