Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература БФХ / molekuljarnaja biologija kletki v2

.pdf
Скачиваний:
108
Добавлен:
10.02.2017
Размер:
34.4 Mб
Скачать

61

Рис. 8-63. Процессинг олигосахаридов, протекающий в ЭР и аппарате Гольджи. Процессинг высокоупорядочен, и каждая стадия, показанная здесь, зависит от предыдущей реакции в серии. Процессинг начинается в ЭР с удаления у олигосахарида, исходно перенесенного к

белку, остатка глюкозы. Еще до завершения синтеза белка могут быть удалены все три остатка глюкозы. Затем маннозидаза в мембране ЭР удаляет определенный остаток маннозы. В стопке Гольджи маннозидаза I удаляет еще три остатка маннозы, а N-ацетилглюкозоаминотрансфераза I добавляет остаток GlcNAc, не дающий маннозидазе II удалить два дополнительных остатка маннозы. В конце концов это приводит к образованию кора из трех остатков маннозы, присутствующего в олигосахаридах «сложного» типа. На этом этапе связь между двумя остатками GlcNAc в коре становится устойчивой к атаке высокоспецифичной эндогликозидазы (EndoH). Так как все последующие стадии данного процесса тоже устойчивы к действию EndoH, обработка этим ферментом широко применяется для разделения сложных олигосахарядов и олигосахаридов с высоким содержанием маннозы. Наконец, добавляются дополнительные остатки GlcNAc, галактозы и сиаловой кислоты. Степень процессинга исходного олигосахарида зависит от типа белка и от положения остатка аспарагина в том белке, к которому присоединен олигосахарид. Процессинг некоторых олигосахаридов прерывается в аппарате Гольджи, другие же претерпевают в различной степени изображенные здесь модификации. Сокращения см. в подписи к рис. 8-61.

Детали этого процесса удалось выяснить, благодаря использованию разнообразных препаратов и антибиотиков, которые подавляют его специфические стадии (табл. 8-4). Останется ли данный олигосахарид богатым маннозой или будет модифицирован, определяется в основном

Таблица 8-4. Препараты, подавляющие различные стадии N-гликозилирования

Препарат (ы)

Подавляемая стадия

 

 

Туникамицин

Долихол-Р → dol-P-P-GlcNAc

Кастаноспермин и N-метил-дезоксинодзиримицин

Глюкоза3-Man9-GlcNAC2-Asn → глюкоза2-Маn9-GlсМАс2-Аsn

Бромокондуритол

Глюкоза2-Маn9-GlcNАс2-Аsn → Man9-GlcNAc2-Asn

Цезоксиманнонодзиримицин

Man8-GlcNAc2-Asn → Man5-GlcNAC2-Asn

Свэнсонин

GIcNAc-Man3-GlcNAc2-Asn→ GlcNAc-Man3-GlcNAc2 -Asn

 

 

62

конфигурацией белка, к которому он прикрепляется: если олигосахарид после присоединения к белку окажется стерически доступным для модифицирующих ферментов аппарата Гольджи, он, видимо, будет превращен в сложную форму; в противном случае он останется богатым маннозой.

8.7.2. Углеводы клеточных мембран обращены к той стороне мембраны, которая топологически эквивалентна внеклеточному пространству

Поскольку олигосахаридные цепи присоединяются со стороны внутреннего пространства ЭР и аппарата Гольджи, расположение углеводов на мембранных белках и липидах несимметрично. Как и асимметрия самого липидного бислоя, эта асимметричная ориентация гликозилированных молекул сохраняется в процессе транспорта к плазматической мембране, секреторным пузырькам или лизосомам. В результате олигосахариды всех гликопротеинов и гликолипидов в соответствующих клеточных мембранах обращены в просвет органелл, а в плазматической мембране - во внеклеточное пространство (рис. 8-64).

8.7.3. Зачем нужно N-гликозилирование? [49]

Существует важное различие между синтезом молекул олигосахаридов и других макромолекул, таких, как ДНК, РНК и белки. Нуклеиновые кислоты и белки копируются с матрицы путем многократного повторения одинаковых этапов, при этом используется один и тот же фермент (или ферменты). Сложные углеводы нуждаются в различных ферментах на разных этапах синтеза, и продукт каждой реакции узнается в качестве субстрата для следующей. Учитывая сложность биохимических механизмов, которые выработались в процессе эволюции для синтеза олигосахаридов, можно предположить, что эти соединения выполняют

Рис. 8-64. Ориентация трансмембранного белка в мембране ЭР сохраняется при транспорте его к другим мембранам. Черные кружки на конце каждой молекулы гликопротеина обозначают N-связанный олигосахарид, который присоединяется к белкам в просвете (полости) ЭР.

Обратите внимание, что эти остатки Сахаров находятся только в просвете внутренних органелл, а после того, как транспортный пузырек сольется с плазматической мембраной, они оказываются обращенными во внеклеточное пространство.

63

важные функции, однако большая часть этих функций пока неизвестна.

К примеру, N-гликозилирование преобладает у всех эукариот, включая дрожжи, но отсутствует у эубактерий. Поскольку у большинства белков, переносимых через ЭР и аппарат Гольджи, имеется один или более N-связанных олигосахаридов (а процесс переноса специфичен для клеток эукариот), было выдвинуто предположение, что эти олигосахариды участвуют в транспорте. Однако оказалось, что препараты, блокирующие некоторые стадии гликозилирования (табл. 8-4), в общем не влияют на транспорт (имеется, правда, одно важное исключение - транспорт в лизосомы, который мы обсудим ниже - см. разд. 8.8). Мутантные культивируемые клетки, у которых гликозилирование в аппарате Гольджи блокировано на разных стадиях, тем не менее жизнеспособны, и транспорт белков протекает у них нормально. Установлено, что некоторые белки без «своих» олигосахаридов не могут правильно свернуться, в результате они преципитируют в ЭР и становятся неспособными к транспорту, однако большинство белков сохраняет нормальную активность и без гликозилирования.

Поскольку цепочки сахаров имеют ограниченную гибкость, даже небольшой N-связанный олигосахарид выдается над поверхностью гликопротеина (рис. 8-65), и может, таким образом, ограничивать присоединение других макромолекул к поверхности этого гликопротеина. В результате присутствие олигосахарида в некоторых случаях обусловливает относительную устойчивость гликопротеина к действию протеаз. Возможно, олигосахариды обеспечивали предковой эукариотической клетке защитную оболочку, которая, в отличие от жесткой клеточной стенки бактерий, позволяла ей изменять форму и двигаться. С тех пор олигосахариды могли модифицироваться для выполнения и других функций.

8.7.4. В аппарате Гольджи происходит сборка протеогликанов [50]

В процессе переноса белков из ЭР к местам конечного назначения через аппарат Гольджи изменяются не только N-связанные олигосахариды; многие белки модифицируются и другими способами. Например, как отмечалось выше, у некоторых белков сахара присоединяются к боковым цепям определенных остатков серина или треонина. Такое О-связанное гликозилирование, как и наращивание цепей N- связанных олигосахаридов, катализируется гликозилтрансферазами. Эти ферменты добавляют к белку по одному сахару, используя в качестве субстрата нуклеотид-сахара, содержащиеся в полостях аппарата Гольджи. Обычно первым присоединяется N-ацетилгалактозамин, а за ним следует различное количество дополнительных остатков Сахаров, от нескольких до 10 и более.

Наиболее сильно гликолизируется протеогликановые коровые белки, которые в аппарате Гольджи модифицируются с образованием протеогликанов. Этот процесс включает полимеризацию одной или более цепей гликозаминогликанов (длинных неразветвленных полимеров, состоящих из повторяющихся дисахаридных единиц) с серинами корового белка. Судьба протеогликанов различна: одни из них секретируются в качестве компонентов внеклеточного матрикса, а другие остаются погруженными в плазматическую мембрану. Кроме того, протеогликаны составляют основу слизи, которая образует защитное покрытие множества эпителиев.

Сахара, входящие в состав гликозаминогликанов, сразу же после их полимеризации в аппарате Гольджи сильно сульфатируются, что придает протеогликанам отрицательный заряд. Сульфат переносится от

Рис. 8-65. Трехмерная структура небольшого N-связанного олигосахарида, определенная с помощью рентгеноструктурного анализа гликопротеина. Этот олигосахарид содержит всего 6 остатков Сахаров, тогда как в N-связанном олигосахариде, первоначально присоединенном к

белку в ЭР, содержится 14 остатков сахаров (см. рис. 8-52). А. Шаростержневая модель, изображающая все атомы, кроме водородных; Б. пространственная модель, темные атомы - остаток аспарагина. (С любезного разрешения Richard Feldman.)

64

активированного донора сульфатов 3'-фосфоаденозин-5'-фосфосульфата (PAPS), который поступает из цитозоля в аппарат Гольджи. Самая тонкая модификация, происходящая в этой органелле, - присоединение сульфата, взятого от PAPS, к гидроксильной группе определенных остатков тирозина в белках. Сульфатированные тирозины характерны для секретируемых белков, но иногда встречаются и у белков плазматической мембраны (в их обращенных во внеклеточное пространство доменах).

8.7.5. При образовании секреторных пузырьков белки часто подвергаются протеолизу [51]

Наиболее радикальная модификация, которой подвергаются белки перед секрецией, происходит в последнюю очередь. Многие полипептидные гормоны и нейропептиды синтезируются в форме неактивного белка-предшественника, из которого затем в результате протеолиза образуется активная молекула. Полагают, что это расщепление начинается в транс-сети Голъджи и продолжается в секреторных пузырьках. Сначала связанная с мембраной протеаза расщепляет белок по связям основных аминокислот (Lys-Arg, Lys-Lys, Arg-Lys, или Arg-Arg), после чего происходит окончательная «доделка» секретируемого продукта (рис. 8-66). В простейшем случае полипептид часто имеет только один N-концевой про-участок, который отщепляется с образованием зрелого белка незадолго до секреции. Следовательно, такие белки синтезируются в виде пре- про-белков, у которых пре-часть является сигнальным пептидом ЭР, удаляемым в шероховатом ЭР. В более сложном случае пептидные молекулы синтезируются в виде полипротеинов, содержащих множество копий одной и той же аминокислотной последовательности (см. рис. 8-66). И наконец, в клетке существуют пептиды, выступающие в роли предшественников для множества различных конечных продуктов. Эти конечные продукты по одному отщепляются от исходной полипептидной цепи. В разных типах клеток одни и те же полипротеины могут расщепляться, различным образом, увеличивая тем самым разнообразие молекул, участвующих в химической передаче сигнала между клетками.

Рис. 8-66. Пример полипротеина, который разрезается с образованием множества копий одной и той же молекулы сигнального пептида. Обычно процессинг начинается с разрезания по парам основных аминокислот (здесь пары Lys-Arg), катализируемого специфической связанной с мембраной протеазой, расположенной в секреторных пузырьках или в транс-сети Гольджи. Здесь показан механизм процессинга, при котором образуется 13-ами-нокислотный пептид-α-фактор дрожжей Saccharomyces cerevisiae. Это секретируемый пептид, который регулирует у дрожжей половой процесс. (По R. Fuller, A. Brake, and J. Thorner, in Microbiology 1986 [L. Lieve, ed.], pp. 273-278. Washington, D. C: American Society for Microbiology, 1986.)

65

Почему для столь большого количества полипептидов характерен такой «задержанный» протеолиз? Возможно многие из них, например, энкефалины (нейропептиды, состоящие из пяти аминокислот), слишком коротки, чтобы их можно было эффективно синтезировать на рибосомах, ведь известно, что даже более длинные пептиды иногда утрачивают сигналы, необходимые для упаковки в секреторные пузырьки. Кроме того, задержка образования активного продукта до того момента, как он попадает в секреторный пузырек, может предотвращать действие данного продукта внутри клетки.

8.7.6. Цистерны Гольджи собраны в виде последовательных компартментов, в которых происходит процессинг продукта [52]

Процессинг в стопке Гольджи высоко упорядочен. Каждая цистерна представляет собой отдельный компартмент, со своим собственным набором ферментов, а вся стопка, таким образом, образует ячейку многостадийного процессинга. Белки модифицируются последовательно, по мере того, как они перемещаются из цистерны в цистерну.

Белки, поступившие из ЭР, попадают в первую цистерну Гольджи (цис-компартмент), затем переходят в следующий компартмент (промежуточный) и, наконец, оказываются в транс-компартменте (представленном последней цистерной стопки), где гликолизирование завершается. Из транс-компартмента белки попадают в транс-сеть Гольджи (ТСГ); в этом трубчатом ретикулуме они распределяются в различные транспортные пузырьки и отправляются к пунктам конечного назначения-плазматической мембране, лизосомам или секреторным пузырькам.

Функциональные различия между цис-, промежуточным и транс-компартментами стопки Гольджи были впервые обнаружены при изучении ферментов процессинга N-связанных олигосахаридов. В ходе экспериментов использовали как физическое фракционирование органеллы, так и иммуноэлектронную микроскопию. Благодаря этому, например, было показано, что удаление остатков маннозы и присоединение N- ацетилглюкозамина происходит в промежуточном компартменте, а присоединение галактозы и сиаловой кислоты-в транс-компартменте (рис. 8-67

и 8-68).

Белки, попадающие в аппарат Гольджи из ЭР (кроме тех из них, которые должны остаться в одной из цистерн Гольджи), «протекают» через стопку от цис- к промежуточному и затем к транс-компартменту, подвергаясь при этом ступенчатому процессингу. Механизм переноса белков и липидов от одной цистерны к другой точно не известен, однако полагают, что в нем участвуют окаймленные пузырьки, которые отшнуровываются от расширений цистерн. Поскольку было показано, что попавшие в аппарат Гольджи белки перемещаются от цис-компартмента через промежуточный к транс-компартменту не напрямую, и никогда не перескакивают, надо, чтобы каждый пузырек мог сливаться только с мембраной следующей цистерны. Хотя до сих пор были обнаружены только три функционально различных области аппарата Гольджи, каждая из них иногда представлена двумя или более последовательно расположенными цистернами, и, возможно, будут открыты более тонкие различия между ними. С другой стороны, может быть, существуют только три фундаментально различных компартмента, и некоторые цистерны внутри них представляют собой просто копии одной и той же функциональной ячейки.

Рис. 8-67. Гистохимическое окрашивание показывает, что аппарат Гольджи биохимически поляризован. А. Неокрашенный препарат. Б. Осмий окрашивает в основном цистерны цис-компартмента. В. Фермент нуклеозиддифосфатаза (см. рис. 8-62) обнаруживается в транс-цистернах

Гольджи; этот фермент раньше называли «тиаминпирофосфатазой». Г. Фермент кислая фосфатаза является маркером транс-сета Гольджи (С любезного разрешения Daniel S. Friend.)

66

Рис. 8-68. Компартментация аппарата Гольджи. По мерс продвижения сквозь тесно сгруппированные цистерны стопки Гольджи белки претерпевают ковалентные модификации. Транс-сеть Гольджи (TGN) представляет собой трубчатый ретикулум, который работает прежде всего как ориентировочный пункт. Локализацию каждой изображенной здесь ступени процессинга удалось определить, сочетая различные методы, включая субфракционирование мембран аппарата Гольджи и электронную микроскопию после окраски антителами к некоторым ферментам процессинга.

Место протекания многих других реакций до сих пор не установлено.

Заключение

Белки поступают в аппарат Гольджи из ЭР и направляются затем к плазматической мембране, лизосомам и секреторным пузырькам. Аппарат Гольджи представляет собой поляризованную структуру, состоящую из одной или более стопок уплощенных цистерн, окруженных множеством мелких пузырьков. Эти цистерны объединены в по меньшей мере три различных компартмепта (цис-, промежуточный и транскомпартмент) аппарата Гольджи. Белки из полости и мембраны ЭР переносятся на цис-сторону стопки Гольджи при помощи транспортных пузырьков. Белки, предназначенные для секреторных пузырьков, плазматической мембраны и лизосом, движутся последовательно от одной цистерны к другой. Наконец, они достигают транс-сети Гольджи, откуда каждый белок в составе специальных пузырьков отправляется к положенному месту.

В отличие от ЭР, аппарат Гольджи содержит много нуклеотид-сахаров. Различные гликозилтрансферазы используют их в качестве субстратов в реакциях гликозилирования белков и липидов, проходящих через аппарат Гольджи. Например, от N-связанных олигосахаридов отщепляются остатки маннозы, и добавляются дополнительные сахара - такие, как остатки N-ацетилглюкозамина, галактозы и сиаловой кислоты. Кроме того, в аппарате Гольджи происходит О-гликозилирование и превращение протеогликановых коровых белков в протеогликаны. Сульфатирование Сахаров в протеогликанах и некоторых остатков тирозина в белках тоже происходит именно в аппарате Гольджи.

8.8. Транспорт белков из аппарата Гольджи в лизосомы

В настоящее время полагают, что все белки, проходящие через аппарат Гольджи, кроме тех, которые остаются там в качестве постоянных компонентов, сортируются в соответствии с местом конечного назначения в транс-сетъ Гольджи. Особенно хорошо механизм этой сортировки изучен для белков, направляющихся в полость лизосом. В данном разделе мы рассмотрим этот процесс избирательного транспорта. Начнем с краткого описания структуры и функции лизосом.

8.8.1. Внутриклеточное гидролитическое расщепление макромолекул происходит главным образом в лизосомах

[53]

В 1949 г. при изучении ферментов углеводного обмена в гомогенатах клеток печени было замечено несколько «необычное» поведение кислой фосфатазы. Активность этого фермента в экстрактах, приготовленных на дистиллированной воде, оказалась выше, чем в экстрактах, приготовленных на изотоническом растворе сахарозы. В старых препаратах она была выше, чем в свежих, и, кроме того, в старых препаратах активность не была связана с осаждаемыми частицами. Вскоре появились такие же сообщения относительно некоторых других гидролитических ферментов. Все эти наблюдения привели к открытию новой органеллы, названной лизосомой. Она представляет собой мембранный мешок, наполненный гидролитическими ферменгами, которые служат для контролируемого внутриклеточного расщепления макромолекул. Повреждение мембраны лизосом в клеточных экстрактах, вызванное осмотическим лизисом или старением препарата, приводит к высвобождению этих ферментов из лизосом в неосаждаемой форме.

Сейчас известно около 40 гидролитических ферментов, содержащихся

67

Рис. 8-69. Лизосомы определяют как окруженные мембранами пузырьки, участвующие во внеклеточном расщеплении веществ. Они содержат большое количество гидролитических ферментов, которые активны при кислом рН. В просвете лизосом кислый рН (около 5)

поддерживается при помощи протонной помпы в мембране, которая использует энергию гидролиза АТР для накачки ионов Н+ внутрь пузырька.

в лизосомах. Это различные протеазы, нуклеазы, гликозидазы, липазы, фосфолипазы, фосфатазы и сульфатазы. Кроме того, все они - кислые гидролазы, обладающие наибольшей активностью при рН 5. Именно такое значение рН поддерживается в лизосомах. В норме мембрана лизосом не проницаема для этих ферментов, но даже в случае их утечки необходимость кислого рН для функционирования гидролаз защищает цитоплазму от разрушения.

Как и все клеточные органеллы, лизосомы не только содержат уникальный набор ферментов, но и окружены необычной, непохожей на остальные, мембраной. Эта мембрана, например, содержит транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому, после чего они могут либо выделяться из клетки, либо использоваться внутри нее вторично. Кроме того полагают, что в мембране лизосомы находится специальный белок, использующий энергию АТР для накачки ионов Н+ в лизосому. Именно это поддерживает в полости данной органеллы рН около 5 (рис. 8-69). Большинство белков лизосомной мембраны необычно сильно гликозилированы, что, возможно, защищает их от действия протеаз в полости органеллы.

8.8.2. Лизосомы - это гетерогенные органеллы [54]

Лизосомы удалось четко визуализировать методом электронной микроскопии примерно через десять лет после того, как впервые были описаны их биохимические свойства. Лизосомы чрезвычайно разнообразны по форме и размеру, но могут быть идентифицированы как одно семейство органелл методами гистохимии. Для этого часто приходится анализировать нерастворимые продукты реакции какой-либо гидролазы с субстратом. В ходе такого исследования можно определить, какие именно органеллы содержат данный фермент (рис. 8-70). С помощью такого подхода лизосомы были обнаружены во всех эукариотических клетках. Морфологическая гетерогенность лизосом контрастирует с относительно однообразной структурой других органелл клетки. Эта гетерогенность отражает широкий спектр реакций расщепления, протекающих с участием кислых гидролаз, включая расщепление внутри- и внеклеточных отходов, переваривание фагоцитированных микроорганизмов и даже питание клетки (поскольку лизосомы - это основное место накопления холестерола из поступающих в клетку путем эндоцитоза сывороточных липопротеинов). На этом основании лизосомы иногда рассматривают как группу разнородных органелл, общим свойством которых является высокое содержание гидролитических ферментов.

Рис. 8-70. Электронная микрофотография двух срезов клетки, окрашенной для выявления кислой фосфатазы-маркерного фермента лизосом. Мембранные органеллы большего размера, содержащие электроноплотные преципитаты фосфата свинца, представляют собой лизосомы, а

их разнообразная морфология отражает изменения количества и природы расщепляемых веществ. На верхнем фото показаны стрелками два маленьких пузырька, которые, вероятно, переносят гидролазы из аппарата Гольджи. Преципитаты образуются, когда ткань, зафиксированную глутаровым альдегидом (чтобы сохранить локализацию фермента) инкубируют с субстратом фосфатазы в присутствии ионов свинца. (С любезного разрешения Daniel S. Friend.)

68

8.8.3. Существуют три пути поступления веществ в лизосомы [55]

Транспорт молекул в лизосомы происходит по-разному и зависит от источника этих молекул. Наиболее хорошо изучен путь, по которому идет расщепление материала, поглощенного путем эндоцитоза. Он включает окаймленные ямки, эндосомы, и, наконец, лизосомы. Как обсуждалось в гл. 6, поглощенные путем эндоцитоза молекулы проходят последовательно от периферических к перинуклеарным эндосомам. Те компоненты, которые не были извлечены из этих эндосом, чтобы вернуться в плазматическую мембрану, попадают затем в третий «промежуточный компартмент», получающий новосинтезированные лизосомные гидролазы и белки лизосомной мембраны из аппарата Гольджи. Поскольку среда в этом эндолизосомном компартменте слабокислая, полагают, что именно здесь начинается гидролитическое расщепление эндоцитированного материала. Для превращения эндолизосом в зрелые лизосомы необходимо, чтобы они утратили определенные компоненты мембран, а уровень рН внутри них еще понизился. Как происходит это превращение, неизвестно.

Существует и второй путь транспорта материала в лизосомы. Именно с ним связано разрушение отработанных частей самой клеткипроцесс, называемый аутофагией. Известно, например, что в клетках печени среднее время жизни одной митохондрии составляет около 10 дней. На электронных микрофотографиях нормальных клеток можно увидеть лизосомы, содержащие митохондрии и секреторные пузырьки. Вероятно, это отработанные органеллы, которые должны быть утилизированы в лизосомах. Процесс деградации, по-видимому, начинается с окружения органеллы мембранами, происходящими из ЭР, в результате чего образуется аутофагосома. Затем, как полагают, аутофагосома сливается с лизосомой (или эндолизосомой), образуя аутофаголизосому, в которой уже начинается процесс деградации. Этот процесс хорошо отрегулирован; отдельные компоненты клетки могут направляться в лизосомы для расщепления по мере необходимости: например, гладкий ЭР, образовавшийся в клетках печени в ответ на лекарственные препараты, после

Рис. 8-71. Три возможных пути образования лизосом. В каждом случае образуются морфологически различные лизосомы, расщепляющие материал из разных источников. В центре этих путей находится «промежуточный компартмент», обозначенный здесь как эндолизосома.

До недавнего времени традиционно выделяли первичные лизосомы и вторичные лизосомы. Первым термином обозначали вновь образованные лизосомные пузырьки, еще не поглотившие никакого материала. Однако последние данные показывают, что лизосомные гидролазы и

мембранные белки лизосом отбираются при помощи разных рецепторов, поэтому вероятнее, что они покидают аппарат Гольджи в отдельных транспортных пузырьках и впервые встречаются в эндолизосоме, которая уже содержит материал для расщепления.

69

выведения препарата из организма удаляется путем аутофагии (см. разд. 8.6.2)

Третий путь поступления материала в лизосомы имеется только у клеток, специализированных для фагоцитоза больших частиц и микроорганизмов. Такие клетки, как макрофаги и нейтрофилы, могут поглощать крупные объекты, образуя фагосомы (см. разд. 6.5.14). Предполагают, что фагосома превращается в фаголизосому тем же способом, который описан для аутофагосомы. Три вида транспорта молекул в лизосомы схематически изображены на рис. 8-71; три типа лизосом. образующихся при этом, могут не отличаться друг от друга ничем, кроме клеточного материала, который они расщепляют. Все чти по сути разнородные органеллы называют одним словом лизосомы.

8-37

8.8.4. Лизосомные ферменты сортируются в аппарате Гольджи мембраносвязанным белком-рецептором, узнающим маннозо-6-фосфат [56]

Для образования лизосом необходим синтез специфических лизосомных гидролаз и мембранных белков. И те, и другие белки синтезируются в ЭР и транспортируются через аппарат Гольджи. Транспортные пузырьки, доставляющие их в эндолизосомы, а затем в лизосомы, отделяются от транс-сети Гольджи. Эти пузырьки должны включать именно лизосомные белки и не включать множество других белков, которые упаковываются в другие транспортные пузырьки и доставляются в другие органеллы.

Каков механизм узнавания лизосомных белков? Что обеспечивает точность отбора? Собственно, эти же вопросы можно задать и в других случаях внутриклеточной сортировки, происходящей с участием транспортных пузырьков. На молекулярном уровне ответ известен только для одного класса ферментов-лизосомных гидролаз. Они имеют уникальный маркер- маннозо-6-фосфат. который присоединяется к N-связанным олигосахаридам этих растворимых лизосомных ферментов. Реакция протекает в пространстве цис-компартмента Гольджи. Соответствующие маннозофосфатные рецепторы группируются на мембране и затем концентрируются в покрытых клатрином окаймленных пузырьках. Они также были выделены и охарактеризованы. Оказалось, что эти рецепторы представляют собой трансмембранные белки, которые связывают лизосомные ферменты, отделяя их таким образом от всех остальных белков и собирая в окаймленные транспортные пузырьки. Эти пузырьки быстро теряют свою кайму и сливаются с эндолизосомами.

Внекоторых клетках небольшое количество рецепторов маннозо-6-фосфата присутствует в плазматической мембране, где они участвуют

вэндоцитозе лизосомных ферментов, которые были выделены во внеклеточную среду. Благодаря этим рецепторам ферменты через окаймленные ямки попадают к эндосомам, а оттуда к лизосомам. Таким необычным путем, с помощью «старьевщиков» и доставляются в лизосомы гидролазы, которые избежали процесса упаковки в транс-сети Гольджи и были поэтому транспортированы к клеточной поверхности и выведены наружу.

8.8.5. Рецептор маннозо-6-фосфата «курсирует» между специализированными мембранами [57]

Маннозофосфатный рецептор был очищен и охарактеризован в экспериментах in vitro. Оказалось, что он связывает специфический олигосаха-

70

Рис. 8-72. Транспорт вновь образованных лизосомных гидролаз в лизосомы. В цис-аппарате Гольджи предшественники лизосомных гидролаз «метятся» при помощи ман-нозо-6-фосфатных групп, а в транссети Гольджи отделяются от других типов белков. Это отделение

происходит потому, что отпочковывающиеся от транс-сети Гольджи клатриновые окаймленные пузырьки содержат рецепторы маннозо-6-фосфата, связывающие лизосомные гидролазы. Пузырьки утрачивают «кайму» и сливаются с эндолизосомами (см. рис. 8-71). При низком рН, который существует в эндолизосомах, гидролазы отщепляются от рецепторов. Рецепторы возвращаются в аппарат Гольджи для проведения повторных циклов транспорта. Вероятность возвращения гидролазы в аппарат Гольджи вместе с рецептором сильно снижается за счет удаления фосфата от маннозного остатка. Хотя существует два структурно различных маннозо-6-фосфат-ре-цепторных гликопротеина, сильно отличающихся по размерам, они имеют сходную аминокислотную последовательность и, вероятно, выполняют сходные функции.

рид при рН7 и отщепляет его при рН6; именно такой рН существует внутри эндолизосом. Лизосомные ферменты в эндолизосоме отделяются от белка-рецептора маннозо-6-фосфата и начинают расщеплять поглощенный материал, содержавшийся в эндосомах. Отделившись от «своих» ферментов, рецепторы восстанавливают структуру и возвращаются в мембрану транс-сети Гольджи, возможно, в составе окаймленных пузырьков (рис. 8-72). Такой механизм возвращения мембран из эндолизосом обратно в аппарат Гольджи весьма напоминает круговорот мембран между эндосомами и плазматической мембраной при опосредованном рецепторами эндоцитозе (см. разд. 6.5.10). Опосредованный рецепторами транспорт лизосомных гидролаз из аппарата Гольджи к эндолизосомам аналогичен эндоцитозу внеклеточных молекул, направляющему их от плазматической мембраны в эндосомы. В обоих случаях рецепторы собираются в покрытых клатрином участках мембраны (называемых окаймленными ямками); эти участки отшнуровываются от мембраны, образуя покрытые клатрином окаймленные пузырьки. Пузырьки доставляют затем лиганд к следующему компартменту, имеющему кислую среду, и оттуда рецепторы возвращаются в исходную мембрану.

Круговорот маннозофосфатного рецептора был прослежен с помощью специфических антител, позволяющих локализовать этот белок в клетке. В норме рецепторы маннозо-6-фосфата обнаруживают в мембранах аппарата Гольджи и эндолизосом, но не в зрелых лизосомах. Если некоторые культивируемые клетки обработать слабым основанием (например аммиаком или хлорохином), которое накапливается внутри органелл с кислой средой и поднимает там рН до нейтрального, то рецепторы исчезают из аппарата Гольджи и появляются в эндолизосомах. Можно вызвать в таких клетках возвращение рецепторов в аппарат Гольджи, либо удалив слабое основание, либо добавив в культуральную среду большое количество маннозо-6-фосфата. При обоих воздействиях рецептор отделяется от связанного с ним фермента в эндолизосоме, в одном случае в результате вторичного закисления среды в органелле, а в другом - за счет конкурентного связывания с рецептором поглощенного маннозо-6- фосфата. Эти эксперименты свидетельствуют о том, что перемещению рецептора обратно в аппарат Гольджи способствует его конформационное изменение, связанное с отщеплением гидролазы.

Соседние файлы в папке Литература БФХ