Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература БФХ / molekuljarnaja biologija kletki v3

.pdf
Скачиваний:
105
Добавлен:
10.02.2017
Размер:
24.19 Mб
Скачать

41

Рис. 15-39. Эта схема показывает, каким образом потомки одного созревающего сперматогония на протяжении всего периода дифференцировки их в зрелые спермии остаются связанными друг с другом цитоплазматическими мостиками. Для простоты показано, что в митоз вступают только два созревающих соединенных сперматогония, из которых в конечном счете образуются восемь связанных между собой гаплоидных сперматид. На самом деле число связанных клеток, проходящих два деления мейоза и совместно дифференцирующихся, значительно больше, чем здесь показано.

генома. Часть таких данных была получена при исследовании дефектных в отношении расхождения хромосом мутантов дрозофилы, у которых в процессе мейоза хромосомы неравномерно распределяются между дочерними клетками; в результате одни сперматозоиды содержат слишком мало хромосом, другие - слишком много, а у некоторых их вообще нет. Поразительно то, что дифференцировка всех этих клеток, даже тех, в которых вовсе нет хромосом, протекает нормально. Этот факт можно объяснить на основе упомянутого выше предположения: продукты недостающих хромосом могли бы доставляться путем диффузии по цитоплазматическим мостикам, связывающим соседние клетки. Не исключено и иное объяснение: в диплоидных сперматогониях или сперматоцитах первого порядка могут заранее, еще до мейоза, создаваться «инструкции» для дифференцировки спермия (предположительно в виде долгоживущих мРНК), так что нет необходимости в функционировании гаплоидного генома в период самой дифференцировки. Независимо от

42

того, какое из этих объяснений верно, очевидно, что при дифференцировке спермии используются продукты обоих хромосомных наборов, хотя собственное ядро клетки при этом гаплоидно.

Заключение

Яйцеклетки развиваются из первичных половых клеток, которые на ранней стадии развития организма мигрируют в яичник и превращаются там в оогонии. После периода митотического размножения оогонии становятся ооцитами первого порядка, которые, вступив в первое деление мейоза, задерживаются в профазе I на время, измеряемое сутками или годами в зависимости от вида организма. В период этой задержки ооцит растет и накапливает рибосомы, мРНК и белки, зачастую используя при этом другие клетки, включая окружающие вспомогательные клетки. Дальнейшее развитие (созревание яйцеклетки) зависит от полипептидных гормонов (гонадотропинов), которые, воздействуя на окружающие каждый ооцит вспомогательные клетки, побуждают их индуцировать созревание небольшой части ооцитов. Эти ооциты завершают первое деление мейоза, образуя маленькое полярное тельце и крупный ооцит второго порядка, который позже переходит в метафазу второго деления мейоза; у многих видов ооцит задерживается на этой стадии до тех пор, пока оплодотворение не инициирует завершение мейоза и начало развития эмбриона.

Спермий обычно представляет собой маленькую и компактную клетку, которая в высокой степени специализирована для функции внесения своей ДНК в яйцеклетку. В то время как у многих организмов весь пул ооцитов образуется еще на ранней стадии развития самки, у самцов после наступления половой зрелости в мейоз непрерывно вступают все новые и новые половые клетки, причем каждый сперматоцит первого порядка дает начало четырем зрелым спермиям. Дифференцировка спермиев осуществляется после мейоза, когда ядра гаплоидны. Однако, поскольку при митотическом делении зрелых сперматогониев и сперматоцитов цитокинез не доводится до конца, потомки одного сперматогония развиваются в виде синцития. В связи с этим дифференцировка спермия может контролироваться продуктами хромосом от обоих родителей.

15.4. Оплодотворение [18]

После своего выхода из гонады как яйцеклетка, так и спермий обречены на гибель в считанные часы, если они не отыщут друг друга и не сольются в процессе оплодотворения. Оплодотворение спасает эти клетки от гибели: яйцеклетка активируется и приступает к осуществлению программы развития, а ядра двух гамет сливаются, формируя таким образом геном нового организма. Большая часть того, что нам известно об оплодотворении, - это результат исследований на морских беспозвоночных, в особенности на морских ежах (рис. 15-40). У подобных организмов оплодотворение осуществляется в морской воде, куда выводятся огромные количества сперматозоидов и яиц. Такой процесс наружного оплодотворения гораздо более доступен для изучения, чем внутреннее оплодотворение у млекопитающих, осуществляющееся в половых путях самки. В связи с этим наше обсуждение оплодотворения будет относиться главным образом к морским ежам. Несмотря на огромную эволюционную дистанцию, которая отделяет млекопитающих от морских ежей, клеточные и молекулярные механизмы, лежащие в основе процесса их оплодотворения, по-видимому, весьма сходны.

Рис. 15-40. Фотография двух видов морских ежей, обычно используемых при изучении оплодотворения. Наверху показан Strongylocentrotus purpuratus, внизу Strongylocentrotus franciscanus. Фотографии почти в натуральную величину. (С любезного разрешения Victor Vacquier.)

43

15.4.1. Контакт со студенистой оболочкой яйца инициирует у спермии морского ежа акросомальную реакцию [19]

Усамки типичного морского ежа в организме содержится 107 яиц, а у самца - 1012 спермиев, что дает возможность получать гаметы морского ежа в очень больших количествах в виде чистых популяций, где все клетки находятся на одинаковой стадии развития. При смешении гамет различные этапы взаимодействия спермиев с яйцеклетками протекают синхронно с точностью до секунд. Процесс оплодотворения начинается в тот момент, когда головка спермия приходит в соприкосновение со студенистой оболочкой (рис. 15-24) яйцеклетки. Такой контакт инициирует у спермия акросомальную реакцию. В этой реакции содержимое акросомы выводится в окружающее пространство. У морских ежей и многих других морских беспозвоночных высвобождение содержимого акросомы сопровождается образованием длинного содержащего актин акросомального отростка, который вытягивается из переднего конца спермия. Как показано на рис. 15-41, кончик этого отростка покрывается компонентами бывшей мембраны акросомы, а также содержимым акросомы, включающим: 1) гидролитические ферменты, с помощью которых спермий проходит через студенистую оболочку яйцеклетки и достигает вителлинового слоя; 2) специфические белки, обеспечивающие связывание верхушки отростка с вителлиновым слоем (см. ниже), и 3) гидролитические ферменты, благодаря которым акросомальный отросток прокладывает себе путь сквозь этот слой к плазматической мембране яйцеклетки. При контакте мембрана на кончике акросомального отростка сливается с мембраной яйцеклетки, что позволяет ядру сперматозоида войти в яйцеклетку (рис. 15-41).

Успермиев морского ежа акросомальную реакцию вызывает полисахаридный компонент (полимер сульфатированной фруктозы) студенистой оболочки яйца: если выделить это вещество из яиц и добавить его к сперматозоидам, оно за несколько секунд инициирует обычную

акросомальную реакцию. Полисахарид студенистой оболочки связывается с гликопротеиновым рецептором плазматической мембраны спермия, вызывая ее деполяризацию; по-видимому, в результате такой деполяризации в мембране открываются каналы для Са2 + , что позволяет ионам Са2+

войти в спермий. В то же время полисахарид студенистой оболочки активирует протонные насосы плазматической мембраны спермия; эти насосы обеспечивают отток из клетки ионов Н + в обмен на

Рис. 15-41. На этой схеме показаны подробности акросомальной реакции у морского ежа. При соприкосновении спермия со студенистой оболочкой яйца содержимое акросомы высвобождается путем экзоцитоза (1), после чего следует бурная полимеризация актина, в результате которой образуется длинный акросомальный отросток, проникающий в студенистую оболочку (2). Вышедшие из акросомы белки (показаны черными точками) прилипают к поверхности акросомального отростка и служат как для связывания спермия с вителлиновым слоем, так и для разрушения этого слоя (3). Когда бывшая акросома (мембрана которой образует теперь верхушку акросомального отростка) приходит в контакт с плазматической мембраной яйца (3), две мембраны сливаются, происходит распад актиновых нитей и спермий проникает в яйцо (4). Как спермий находит яйцеклетку для оплодотворения после того, как гаметы выходят в морскую воду? Яйца морского ежа выделяют пептид, называемый резактом, который является видоспецифическим хемоаттрактантом для спермиев морского ежа. Резакт связывается на поверхности спермия с трансмембранным рецептором, который, как обнаружено, представляет собой фермент гуанилатциклазу. Этот фермент катализирует синтез циклического GMP в сперматозоиде.

44

Na +. Обусловленное этим повышение рН в головке спермия и увеличение концентрации цитозольного Са2 + инициируют акросомальную реакцию. Было высказано предположение, что при повышении внутриклеточного рН неполяризованный актин в цитоплазме спермия отделяется от особых белков, в норме связывающих актин и блокирующих его полимеризацию (см. разд. 11.2.12); это приводит к формированию акросомального отростка в результате «взрывной» полимеризации актина.

Однако удлинение акросомального отростка связано не только с полимеризацией актина. Приток ряда ионов (Са2 + , Na + и С1-) повышает количество осмотически активных молекул в головке спермия, что приводит к притоку в спермий воды. Вызванное этим резкое повышение гидростатического давления, вероятно, способствует удлинению акросомального отростка.

15.4.2. Связывание спермия с яйцеклеткой осуществляется при помощи видоспецифических макромолекул [20]

Видоспецифичность оплодотворения особенно важна для обитающих в воде животных, яйцеклетки и спермии которых выводятся в водную среду; ведь в этих условиях возможно их слияние с яйцеклетками и спермиями других видов. У морских ежей такая специфичность проявляется в связывании спермия с вителлиновым слоем, лежащим под студенистой оболочкой: иногда спермии претерпевают акросомальную реакцию при контакте с яйцеклеткой животного другого вида, однако спермии не могут связываться с такими яйцеклетками и, следовательно, не могут оплодотворять их.

Из спермы морского ежа было выделено вещество, которое считают ответственным за видоспецифическое связывание сперматозоидов с вителлиновым слоем. Это белок, получивший название байндина, содержится в акросоме. После своего высвобождения в акросомальной реакции он покрывает поверхность акросомального отростка и способствует прикреплению спермия к яйцу. У каждого вида морских ежей вырабатывается свой особый тип байндина, и молекулы этого байндина связываются с вителлиновым слоем яиц морского ежа только того же вида. Оказалось, что вителлиновый слой одного из видов морских ежей содержит видоспецифический гликопротеин, который выступает в роли рецептора байндина в процессе связывания. Есть данные о том, что байндин действует подобно лектину, узнающему специфические угле-

Рис. 15-42. Молекулы байндина, покрывающие поверхность акросомального отростка сперматозоида морского ежа (схематизировано). Как полагают, эти молекулы связываются специфической сахаридной цепью рецепторной молекулы, находящейся в вителлиновом слое яйца.

45

водные детерминанты в молекулах гликопротеинов (рис. 15-42). Предполагается, что, поскольку байндин способен инициировать слияние искусственных липидных пузырьков in vitro, он может быть катализатором слияния плазматических мембран акросомального отростка и яйцеклетки после того, как эти мембраны пришли в соприкосновение (разд. 6.5.16).

15.4.3. Активация яйцеклетки опосредуется изменениями внутриклеточных концентраций ионов [21]

Как только активированный спермий морского ежа прикрепляется к яйцу, акросомальный отросток быстро прокладывает себе путь через вителлиновый слой. Мембрана на верхушке отростка сливается с плазматической мембраной на кончике микроворсинки (рис. 15-43). Соседние микроворсинки быстро удлиняются и группируются вокруг спермия; затем, по мере того как микроворсинки постепенно растворяются, спермий головкой вперед затягивается в яйцо.

Сперматозоид запускает программу развития, заложенную в яйце. Перед оплодотворением яйцеклетка метаболически неактивна: она не синтезирует ДНК, а РНК и белки образуются в ней очень медленно. Яйцеклетка, вышедшая из яичника и лишенная теперь поддержки окружавших ее клеток, погибает в считанные часы, если не будет спасена спермием. Связывание спермия с поверхностью яйцеклетки индуцирует повышение ее метаболической активности, синтез ДНК и последующее дробление. Однако сам спермий служит лишь устройством для запуска уже заложенной в яйцеклетке программы. Сам он для этого не столь нужен: яйцеклетку можно активировать с помощью множества неспецифических химических или физических воздействий. Например, для яйца лягушки эффективным стимулом может быть укол иглой. (Развитие яйцеклетки, активированной в отсутствие спермия, называется партеногенезом; ряд организмов, в том числе некоторые позвоночные, обычно размножаются путем партеногенеза.) Начальные стадии активации яйцеклетки не могут зависеть от образования каких-либо новых белков, так как они протекают совершенно нормально в присутствии ядов, ингибирующих белковый синтез.

У морских ежей все ранние стадии активации яйца связаны с изменением концентраций содержащихся в нем ионов. Уже в первые секунды или минуты после внесения спермы в суспензию яйцеклеток в них происходят три различных сдвига: 1) увеличение проницаемости

Рис. 15-43. Один из моментов в процессе оплодотворения яйца морского ежа спермием (электронная микрофотография). Мембрана на верхушке акросомального отростка слилась с плазматической мембраной яйца на кончике одной из микроворсинок его поверхности. Неоплодотворенное яйцо морского ежа покрыто более чем 100 000 микроворсинками. (С любезного разрешения Frank Collins.)

46

Рис. 15-44. Два ионных сдвига, ответственные за активацию яйца морского ежа после оплодотворения. Примерно через 10 с после оплодотворения начинается высвобождение ионов Са2+ из внутриклеточных хранилищ в цитозоль; их концентрация через 2,5 мин возвращается к уровню, несколько превышающему тот, который свойствен неоплодотворенному яйцу. Приблизительно через 60 с включается механизм выведения ионов Н + , сопряженного с притоком Na + , что ведет уже к длительному повышению внутриклеточного рН.

плазматической мембраны для Na + вызывает деполяризацию мембраны в течение нескольких секунд; 2) массовое высвобождение ионов Са 2 + из внутриклеточного хранилища кальция (разд. 11.6.3) ведет к заметному повышению их концентрации в цитозоле в течение примерно 10 с; 3) не более чем через 60 с начинается выведение ионов Н +, сопряженное с поглощением ионов Na +, что приводит к значительному повышению внутриклеточного рН (рис. 15-44). Как будет описано ниже, эти ионные сдвиги обусловливают два физиологических эффекта: во-первых, благодаря им яйцо становится недоступным для проникновения других спермиев и, во-вторых, с их помощью осуществляются первые этапы в развертывании программы развития.

15.4.4. Деполяризация плазматической мембраны яйца обеспечивает быструю блокаду полиспермии [22]

Хотя к яйцеклетке может прикрепиться большое число сперматозоидов, только один из них обычно сливается с ее плазматической мембраной и вносит в клетку свое ядро. Если с яйцеклеткой сольются два или несколько спермиев (это называют полиспермией), то будут формироваться добавочные митотические веретена, что приведет к аномальному расхождению хромосом при дроблении; в таких случаях образуются недиплоидные клетки и развитие вскоре прекращается. Это означает, что яйцеклетки, окруженные большим количеством сперматозоидов, после оплодотворения одним из них должны каким-то образом быстро создать препятствие для проникновения дополнительных спермиев. Механизм такой быстрой блокады полиспермии не у всех одинаков.

У рыб в оболочках яиц имеется узкий канал, называемый микропиле, через который спермии могут проходить лишь один за другим; прохождение одного спермия стимулирует яйцо, вследствие чего содержимое кортикальных гранул высвобождается и закупоривает отверстие, преграждая вход другим спермиям. Однако у большинства организмов яйцеклетки не имеют микропиле и могут сливаться со спермием в любом участке своей поверхности. У яйцеклеток некоторых животных (таких, как морские ежи и амфибии) полиспермию предотвращает быстрая деполяризация плазматической мембраны после слияния с первым сперматозоидом. Мембранный потенциал яйца морского ежа составляет примерно — 60 мВ. Через несколько секунд после контакта со спермием мембранный потенциал резко падает и меняет знак, доходя приблизительно до + 20 мВ, а затем спустя примерно минуту начинает постепенно возвращаться к исходному уровню (рис. 15-45). Если предотвратить деполяризацию мембраны (в основном обусловленную при-

47

Рис. 15-45. Изменение мембранного потенциала яйца морского ежа после оплодотворения. Быстрая деполяризация каким-то образом препятствует слиянию с яйцеклеткой других спермиев, что обеспечивает быструю блокаду полиспермии.

током ионов Na+ в яйцеклетку после контакта со спермием), проводя оплодотворение в среде с низкой концентрацией Na +, то частота случаев полиспермии возрастает. Кроме того, если неоплодотворенную яйцеклетку искусственно деполяризовать, пропуская через нее ток с помощью микроэлектродов, то сперматозоиды будут способны прикрепляться к яйцеклетке, но не смогут сливаться с ней; если же теперь реполяризовать мембрану, прикрепившиеся спермии сольются с яйцеклеткой и проникнут в нее. Хотя молекулярный механизм этого явления неизвестен, кажется вероятным, что деполяризация мембраны, обычно происходящая при оплодотворении, изменяет конформацию какого-то важного белка плазматической мембраны яйца таким образом, что мембрана спермия уже не может слиться с нею.

Мембранный потенциал яйцеклетки через несколько минут после оплодотворения возвращается к норме; поэтому нужен еще какой-то механизм, препятствующий полиспермии в течение более длительного времени. В большинстве яйцеклеток (в том числе и в яйцеклетке млекопитающих) этот барьер создают вещества, которые освобождаются из кортикальных гранул, расположенных сразу под плазматической мембраной яйцеклетки.

15.4.5. За позднюю блокаду полиспермии ответственна кортикальная реакция [23]

Кортикальные гранулы яйца морского ежа сливаются с плазматической мембраной и высвобождают свое содержимое через 10-50 с после контакта яйца со спермием. Кортикальная реакция запускается сильным повышением концентрации свободных ионов Са2+ в цитозоле. У активированного яйца морского ежа менее чем через минуту после присоединения спермия концентрация Са2 + увеличивается примерно в сто раз, а затем спустя одну-две минуты снова снижается до обычного уровня (рис. 15-46). Роль ионов Са2+ в запуске кортикальной реакции можно прямо продемонстрировать в опыте с изолированными плазматическими мембранами яиц морского ежа; к внутренней поверхности таких мембран еще прикреплены кортикальные гранулы и если добавить к этому препарату небольшое количество Са2 + , то через несколько секунд происходит экзоцитоз.

В яйцах морского ежа кортикальная реакция приводит по меньшей мере к двум независимым последствиям: 1) протеолитические ферменты, вышедшие из кортикальных гранул, быстро разрушают рецепторы байндина вителлинового слоя, ответственные за связывание спермиев, и 2) освобождаемое содержимое кортикальных гранул вызывает отделение вителлинового слоя, ранее примыкающего к плазматической мембране, от поверхности яйца, и в то же время благодаря ферментам образуются поперечные сшивки между белками этого слоя, что делает

Рис. 15-46. Кортикальные гранулы, прикрепленные к изолированной мембране неоплодотворенной яйцеклетки морского ежа (микрофотография, полученная с помощью сканирующего электронного микроскопа). При добавлении к такому препарату ионов Са2+ кортикальные гранулы сливаются с плазматической мембраной и высвобождают свое содержимое путем экзоцитоза. Поскольку в каждой клетке имеется около 15 000 кортикальных гранул, в результате кортикальной реакции поверхность яйца менее чем за минуту увеличивается более чем вдвое; часть дополнительного мембранного материала идет на удлинение микроворсинок на поверхности всего яйца, тогда как остальная часть поступает в окаймленные ямки и пузырьки (V. D. Vacquier, Dev. Biol., 43, 62-74, 1975.)

48

Рис. 15-47. Эта схема показывает, каким образом кортикальная реакция яйца морского ежа предотвращает проникновение в него дополнительных спермиев. Высвобождаемое содержимое кортикальных гранул вызывает расширение щели под вителлиновым слоем и изменяет этот слой так, что в нем исчезают рецепторы байндина и он превращается в «оболочку оплодотворения», через которую не могут проникнуть спермии. Такое «затвердение» вителлинового слоя происходит в основном благодаря образованию ковалентных сшивок между тирозиновыми боковыми цепями белков, вследствие чего формируется обширная нерастворимая белковая сетка.

его более жестким. В результате указанных событий формируется оболочка оплодотворения, с которой спермии не могут связаться и через которую они не могут проникнуть (рис. 15-47).

15.4.6. Активация яйцеклетки осуществляется с помощью инозитолфосфолипидного механизма клеточной сигнализации [24]

Деполяризация мембраны представляет собой первое обнаруживаемое изменение после оплодотворения, но, судя по всему, она нужна лишь для предотвращения полиспермии. Искусственная деполяризация мембраны не приводит к активации яйцеклетки; и наоборот, устранение деполяризации мембраны во время оплодотворения не подавляет активацию.

Есть много убедительных данных в пользу того, что программу развития яйцеклетки запускает кратковременное повышение концентрации Са2+ в цитозоле (которое распространяется от места внедрения спермия по всей яйцеклетке в виде кольцевой волны - см. рис. 4-35). Концентрацию Са2+ в цитозоле можно искусственно повысить либо путем прямой инъекции этих ионов в яйцеклетку, либо с помощью

49

ионофоров, переносящих Са2 + , таких, например, как А23187 (см. разд. 6.4.19). Таким способом удается активировать яйцеклетки всех до сих пор исследованных животных, в том числе млекопитающих. Если же, напротив, предотвратить повышение концентрации Са2 + , введя связывающее кальций вещество ЭГТА, активации при оплодотворении не происходит. Ионы Са2+ действуют в клетке по меньшей мере одним способом - они присоединяются к Са2+-связывающему белку кальмодулину, который в свою очередь активирует много разнообразных белков клетки (разд. 12.4.3). Кальмодулин был найден в больших количествах во всех исследованных яйцеклетках.

Как оплодотворение приводит к повышению концентрации ионов Са2+ в цитозоле яйцеклетки? В гл. 12 мы говорили о том, что внеклеточные лиганды, связываясь с рецепторными белками клеточной поверхности, вызывают гидролиз фосфатидилтозитол-бисфосфата (Р1Р2) в плазматической мембране, в результате чего образуется инозитолтрифосфат (InsP3) и диацилглицерол; InsP3 в свою очередь инициирует высвобождение Са2+ из внутриклеточных хранилищ (разд. 12.3.9) в цитозоль, а диацилглицерол активирует протеинкиназу С (разд. 12.3.10). Эксперименты на морских ежах подтверждают предположение о том, что указанный механизм ответствен и за повышение концентрации ионов Са2+ в цитозоле при оплодотворении. Концентрация InsP3 возрастает через несколько секунд после оплодотворения и сразу после этого повышается концентрация ионов Са2+ в цитозоле; если в неоплодотворенное яйцо ввести путем инъекции InsP3, то концентрация Са2 + в цитозоле повышается и яйцеклетка активируется. Как и ожидалось, активация спермия связана с G-белком, который активирует специфическую фосфолипазу С, катализирующую гидролиз РIР2 (см. разд. 12.3.9). Непонятно, однако, связывается ли спермий с рецептором плазматической мембраны яйцеклетки, функционально сопряженным с фосфолипазой С посредством G-белка, или при слиянии с яйцеклеткой он вводит в нее активатор G-белка.

Поскольку концентрация ионов Са2 + в цитозоле после оплодотворения повышается лишь ненадолго (примерно на 1 мин), ясно, что это не может непосредственно приводить к событиям, происходящим на более поздних стадиях активации яйцеклетки. У морских ежей к таким событиям относятся повышение интенсивности синтеза белков, начинающееся через 8 мин после оплодотворения, и инициация синтеза ДНК спустя примерно 30 мин. Имеется большое число данных, указывающих на то, что активация протеинкиназы С играет важную роль на поздних стадиях активации, причем наиболее существенным в этот период является повышение внутриклеточного рН.

15.4.7. У некоторых организмов поздние биосинтетические процессы, связанные с активацией яйцеклетки, индуцируются повышением внутриклеточного рН [25]

У морских ежей активация протеинкиназы С диацилглицеролом приводит к активации (преимущественно посредством фосфорилирования) Na+ — Н +-ионообменника плазматической мембраны яйцеклетки. Этот мембранный транспортный белок использует энергию, запасенную в виде трансмембранного градиента ионов Na +, для откачивания ионов Н + из клетки (см. разд. 6.4.10). Отток ионов Н+ приводит к тому, что величина рН внутри клетки возрастает с 6,6 до 7,2 и при дальнейшем развитии зиготы поддерживается на этом уровне (см. рис. 15-47). Считается, что необычно низкое значение внутриклеточного рН в неоплодотворенных яйцах морского ежа несет основную ответственность за поддержание яйцеклетки в метаболически неактивном состоянии; более

50

Рис. 15-48. Повышение внутриклеточного рН при инкубации клеток (например, яйцеклеток) в среде с аммиаком. Аммиак диффундирует через плазматическую мембрану и взаимодействует в цитозоле с ионами Н + , образуя NH+4, в результате чего внутриклеточная концентрация ионов Н+ падает и рН возрастает.

того, имеются убедительные свидетельства того, что именно повышение рН после оплодотворения индуцирует в оплодотворенных яйцах морского ежа позднюю биосинтетическую активность. Во-первых, если повысить рН в неоплодотворенных яйцах, инкубируя их в среде, содержащей аммиак (рис. 15-48), то процессы синтеза белков и репликации ДНК заметно усиливаются даже без повышения внутриклеточной концентрации свободных ионов Са2 +. Во-вторых, если сразу после оплодотворения поместить яйца в морскую воду, не содержащую ионов Са2+ (так что не будет градиента Na+ для откачивания ионов Н+ ), внутриклеточный уровень рН не повышается и поздние события, связанные с активацией яйца, не наступают. Такие яйца еще можно спасти, добавив к среде аммиак: тогда рН в клетке возрастает и даже при отсутствии внеклеточного Na+ индуцируется синтез белков и ДНК.

Для заметного усиления белкового синтеза в оплодотворенных яйцах не нужен синтез новой РНК, поскольку этот феномен имеет место и в присутствии антибиотика актиномицина D, ингибирующего синтез РНК. Полагают, что в обычных условиях синтез белков усиливается в результате по меньшей мере двух независимых изменений: 1) ранее запасенные в яйце молекулы мРНК становятся доступными для синтеза белков; 2) происходит активация рибосом, что позволяет им быстрее транслировать мРНК. В отличие от этого ускорение белкового синтеза в неоплодотворенных яйцах, обработанных аммиаком, является следствием одной лишь усиленной мобилизации существующих молекул мРНК. Если мобилизация мРНКпо всей вероятности, результат повышения внутриклеточного рН, то движение рибосом вдоль цепей мРНК, по-видимому, ускоряется под влиянием какого-то другого фактора. Детали механизмов, лежащих в основе двух указанных типов активации, пока неясны.

Оплодотворение представляет собой в высшей степени уникальный феномен, однако в нем участвуют те же механизмы передачи клеточных сигналов, которые контролируют внутриклеточные процессы в сомати-

Таблица 15-1. Последовательность событий после оплодотворения яиц морского ежа

 

Событие

Время после оплодотворения

Внутриклеточное промежуточное звено

 

 

 

 

 

1.

Деполяризация плазматической мембраны

<5с

 

Индуцированное спермием повышение проницаемости

 

 

 

 

плазматической мембраны для ионов Na+ (и до

 

 

 

 

некоторой степени для Са2 + )

 

 

 

 

2.

Гидролиз фосфатидилинозитол-бисфосфата

< 10 с

Активация фосфолипазы С

 

 

 

 

 

3.

Повышение внутриклеточной концентрации

10-40

с

Индуцированное InsP3 высвобождение связанных ионов

свободных ионов Са2 +

 

 

Са2 + из внутриклеточных хранилищ

4.

Экзоцитоз кортикальных гранул

10-50

с

Повышение внутриклеточной концентрации Са2+

5.

Повышение внутриклеточного значения рН

60 с

 

Активация Na+ - Н + -ионообменника протеинкиназой С

 

 

 

 

6.

Усиление синтеза белков

8 мин

Повышение внутриклеточного рН

 

 

 

 

7.

Слияние ядер спермия и яйца

30 мин

 

8.

Начало репликации ДНК

30-45 мин

Повышение внутриклеточного рН

Соседние файлы в папке Литература БФХ