Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
краткий конспект doc.doc
Скачиваний:
30
Добавлен:
01.12.2018
Размер:
8.73 Mб
Скачать
  1. Колебательный контур, вынужденные электрические колебания.

В цепи, содержащей емкость и индуктивность, могут возникнуть электромагнитные колебания. Поэтому такая цепь называется колебательным контуром.

Если заряженный конденсатор замкнуть на катушку индуктивности, то в контуре возникает убывающий по величине ток (рис.122). Вследствие этого в катушке возникает ЭДС индукции, противодействующая убыванию тока, поддерживающая ток и после окончательной разрядки конденсатора. Т.е. при разрядке конденсатора энергия электрического поля переходит в энергию магнитного поля катушки.

Когда конденсатор полностью разрядится, то ток в цепи поддерживается за счет энергии магнитного поля , что приводит к перезарядке конденсатора и, соответственно, к переходу энергии магнитного поля в энергию электрического поля.

В реальном колебательном контуре необходимо учитывать сопротивление входящих в него проводников, а, следовательно, при протекании тока часть энергии электрического и магнитного поля выделяется в виде количества теплоты. Поэтому в реальном колебательном контуре электромагнитные колебания очень быстро прекращаются, а сопротивление, на котором энергия электрического тока переходит в тепловую, называется активным.

Реальный контур обладает активным сопротивлением и энергия колебаний переходит в тепловую.

Вынужд. Колеб.

Рассмотренная цепь из последовательно соединенных индуктивности, емкости и активного сопротивления может рассматриваться как колебательная система, так как в ней возможно возникновение электромагнитных колебаний с собственной частотой

при .

Эти колебания являются затухающими, так как энергия, сосредоточенная в контуре в момент возникновения колебаний выделяется в виде тепла на активном сопротивлении во время колебательного процесса.

Тогда, при включении в контур источника переменной ЭДС, его можно рассматривать как элемент, инициирующий в контуре вынужденные колебания с частотой . Следовательно, уравнение

представляет собой уравнение вынужденных электромагнитных колебаний под действием внешней периодически изменяющейся ЭДС.

Используя собственную частоту и коэффициент затухания это уравнение можно представить и в виде .

Как известно, для вынужденных колебаний характерно явление резонанса, которое заключается в возрастании амплитуды вынужденных колебаний при приближении частоты внешнего воздействия к резонансной частоте, зависящей от параметров колебательной системы.

Резонансными кривыми называются зависимости амплитудных значений, совершающих вынужденные колебания физических величин, от частоты внешнего воздействия, т.е., в нашем случае, от частоты источника ЭДС.

Закон Ома для рассматриваемой цепи – колебательного контура позволяет проанализировать зависимость амплитуды силы тока от частоты источника ЭДС: .

Если амплитудное значение ЭДС, а также величины активного сопротивления, емкости и индуктивности постоянны, то амплитудное значение силы тока зависит. На рис.155 показаны резонансные кривые для амплитуды силы тока в зависимости от частоты источника при различном активном сопротивлении колебательного контура. Резонанс выражен тем отчетливее, чем меньше активное сопротивление, т.е. чем меньше коэффициент затухания .

На рис.156 и рис.157 показаны резонансные кривые для амплитудных значений заряда и напряжения на конденсаторе при различных активных сопротивлениях контура.

Резонансная частота для заряда и напряжения всегда меньше, чем резонансная частота для тока, а резонанс выражен тем больше, чем меньше активное сопротивление контура.

РИС.155 РИС.156 РИС.157 РИС.158

то можно сделать вывод, что , общем случае, резонансная частота для напряжения на конденсаторе всегда меньше, а для напряжения на катушке индуктивности всегда больше, чем резонансная частота для силы тока (и напряжения на активном сопротивлении). Резонансные кривые для напряжений на активном сопротивлении, катушке индуктивности и емкости показаны на рис.158.

Для представляющих практический интерес контуров с малым затуханием, , членом можно пренебречь. В этом случае резонанс для всех переменных электрических величин: силы тока, заряда и напряжения на конденсаторе, напряжения на катушке индуктивности наступает практически одновременно при частоте источника, равной частоте свободных колебаний в контуре:

. При резонансе сдвиг фаз между током и напряжением равен нулю (рис.159).

Для контуров с большим затуханием, резонансная кривая не имеет максимума, т.е. резонанс отсутствует. В этом случае, зависимость, например, напряжения на конденсаторе от частоты источника представлена на рис.157 для сопротивления R3.

Рассмотренное явление резонанса при последовательном соединении источника с элементами контура называется резонансом напряжений. При этом - называется волновым или характеристическим сопротивлением, а максимальные напряжения на катушке индуктивности и конденсаторе равны и противоположны по фазе.

Для контуров с малым затуханием характерен «острый» резонанс и высокая добротность , которая характеризует относительную убыль энергии контура за период при свободных колебаниях.

Физический смысл добротности для контуров с малым затуханием при резонансе.

1)Добротность показывает во сколько раз максимальное значение амплитуды напряжения на конденсаторе (и на индуктивности) превышает амплитуду внешней ЭДС (рис.158). .

2)Можно показать, что добротность характеризует относительную ширину резонансной кривой: . Шириной резонансной кривой, или полосой пропускания называется интервал частот , ограниченный частотами и , на которых амплитуда в меньше амплитуды при резонансе (рис.160).

Резонанс используется для выделения из сложного «сигнала» (зарегистрированного напряжения) нужной составляющей. Это имеет практическое значение в радиотехнике при приеме и настойке на определенную частоту радиосигнала. Чем выше добротность контура, тем уже резонансная кривая и тем легче «отстраиваться» от передач, ведущихся на соседних частотах.

РИС.159 РИС.160