Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ МАТАН 1-99.doc
Скачиваний:
37
Добавлен:
14.04.2019
Размер:
14.69 Mб
Скачать

Примеры:

Найти асимптоты кривой

Имеем

Кривая имеет двустороннюю наклонную А. y = x.

Найти асимптоты кривой

Находим горизонтальные А.: Горизонтальная А. одна: y = 0 (ось Ox).

Для определения вертикальных А. находим те значения х, в окрестности которых y = 3/(x2-4) неограниченно возрастает по абсолютной величине. Такими значениями являются x = ±2. Следовательно, вертикальными А. являются прямые x = -2 и x = 2.

67

Точки разрыва

Если попытаться построить отрицание свойства непрерывности функции в точке (предельной для области определения), то получится следующее. Существует такая окрестность значения функции в рассматриваемой точке, что сколь близко мы не подходили бы к данной точке, всегда можно будет найти точку, значение в которой окажется за пределами заданной окрестности.

В этом случае говорят, что функция f терпит разрыв в точке a.

Возможны два варианта:

  • либо предел функции существует, но он не совпадает со значением функции в данной точке:

тогда точка a называется точкой устранимого разрыва функции fкомплексном анализеустранимая особая точка). Положив можно добиться непрерывности функции в этой точке. Такое изменение значения функции в точке, превращающее функцию в непрерывную в этой точке, называется доопределением по непрерывности.

  • либо предела функции в данной точке не существует. В этом случае для числовой функции, заданной на вещественной прямой (или её подмножестве), возможно существование односторонних пределов. Отсюда возникает классификация точек (неустранимого) разрыва:

    • если оба односторонних предела существуют и конечны, но хотя бы один из них отличен от значения функции в данной точке, то такую точку называют точкой разрыва первого рода;

    • если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.

Точка, в которой функция не определена, будет точкой разрыва функции лишь при условии, если функция определена, хотя бы с одной стороны вблизи этой точки.

Непрерывность функции в точке

Пусть функция f(x) определена в некоторой окрестности O(x0) точки x0 (включая саму точку x0).

Функция f(x) называется непрерывной в точке x0, если существует limx → x0 f(x) , равный значению функции f(x) в этой точке:

lim

xx0

f(x) = f(x0),

(1)

т.е.

" O( f(x0) )     $ O(x0) :     x О O(x0) Ю f(x) О O( f(x0) ) .

Замечание. Равенство (1) можно записать в виде:

lim

xx0

f(x) = f (

lim

xx0

x ),

т.е. под знаком непрерывной функции можно переходить к пределу.

Пусть Δx = xx0 — приращение аргумента, Δy = f(x) − f(x0 ) — соответствующее приращение функции.

Необходимое и достаточное условие непрерывности функции в точке

Функция y = f(x) непрерывна в точке х0 тогда и только тогда, когда

lim

Δx → 0

Δy = 0.

(2)

Замечание. Условие (2) можно трактовать как второе определение непрерывности функции в точке. Оба определения эквивалентны.

Пусть функция f(x) определена в полуинтервале [x0, x0 + δ ).

Функция f(x) называется непрерывной справа в точке x0, если существует односторонний предел

lim

xx0 + 0

f(x) = f(x0).

Пусть функция f(x) определена в полуинтервале (x0 − δ, x0].

Функция f(x) называется непрерывной слева в точке x0, если существует односторонний предел

lim

xx0 − 0

f(x) = f(x0).

Непрерывность суммы, произведения и частного двух непрерывных функций

Теорема 1. Если функции f(x) и g(x) непрерывны в точке х0, то в этой точке непрерывны

f(x) ± g(x),     f(x) · g(x),      

f(x)

g(x)

    (g(x0) ≠ 0).

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Все элементарные функции непрерывны в каждой точке их областей определения.

Локальные свойства непрерывных функций

Теорема 3 ( ограниченность непрерывной функции). Если функция f(x) непрерывна в точке x0, то существует окрестность O(x0), в которой f(x) ограничена.

Доказательство следует из утверждения об ограниченности функции, имеющей предел.

Теорема 4 ( устойчивость знака непрерывной функции). Если функция f(x) непрерывна в точке x0 и f(x0) ≠ 0, то существует окрестность точки x0, в которой f(x) ≠ 0, причем знак f(x) в этой окрестности совпадает со знаком f(x0).

68