Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lineynaya.docx
Скачиваний:
25
Добавлен:
17.04.2019
Размер:
338.75 Кб
Скачать

38)Теорема о совместности однородной системы линейных уравнений.

Пусть дана система линейных однородных уравнений:

а11х1+а12х2+….+а1nXn=0

а12х1+а22х2+….+а2nXn=0

…………………………….

Am1x1+am2x2+……+amnXn=0

Однородная система всегда совместна,она имеет нулевое(тривиальное) решение х1=х2=….=хn=0

Теорема.

Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т.е r<n

Необходимость.

Т.к ранг не может превосходить размера матрицы, то, очевидно, r< или = n. Пусть r=n. Тогда один из миноров размера n x n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: xi= ∆i/∆=0, ∆i=0, ∆ не =0. Значит, других, кроме тривиальных, решений нет. Если есть нетривиальное решение, то r<n.

Достаточность.

Пусть r<n. Тогда однородная система, будучи совместной, является неопределенной. Значит, она имеет бесчисленное множество решений, т.е имеет и ненулевые решения.

39)Теорема о существовании ненулевых решений однородных систем линейных уравнений.

Теорема.

Для того, чтобы однородная система n линейных уравнений с n неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель ∆был равен нулю, т.е ∆=0

Если система имеет ненулевые решения, то ∆=0. Ибо при ∆ не равно 0 система имеет только единственное, нулевое решение. Если же ∆=0, то ранг r основной матрицы системы меньше числа неизвестных, т.е r<n/ И, значит, система имеет бесконечное множество(ненулевых) решений.

40)Линейное(векторное) пространство. Пространство rⁿ и линейные операции в этом пространстве.

Векторное (линейное) пространство - математическое понятие, обобщающее понятие совокупности всех (свободных) векторов обычного трехмерного пространства.

Векторным пространством (над полем R или C) называют множество L, состоящее из элементов любой природы (называемых векторами), в котором определены операции сложения элементов и умножения элементов на действительные (комплексные) числа, удовлетворяющие следующим условиям:

1) x + y = y + x (коммутативность сложения);

2) (x + y) + z = x + (y + z) (ассоциативность сложения);

3) имеется нулевой вектор 0 (или нуль-вектор), удовлетворяющий условию x + 0 = x для любого вектора x;

4) для любого вектора x существует противоположный ему вектор y такой, что x + y = 0;

5) 1∙x = x;

6) α(βx) = (αβ)x (ассоциативность умножения);

7) (α + β)x = αx + βx (дистрибутивность относительно числового множителя);

8) α(x + y) = αx + αy (дистрибутивность относительно векторного множителя).

Векторное пространство называют. n-мерным (или имеет «размерность n»), если в нём существуют n линейно независимых элементов e1, e2, ...en, а любые n+1 элементов линейно зависимы. Векторное пространство называют бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мерного векторного пространства образуют базис этого пространства. Если e1, e2, ...en - базис векторного пространства, то любой вектор x этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:

x = α1e1 + α2e2 + ... + αnen.

При этом числа α1, α2, ...,αn называют координатами вектора x в данном базисе.

Множество всех векторов 3-мерного пространства образует векторное пространство. Более сложным примером может служить так называемое n-мерное векторное пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел (λ1, λ2, ..., λn). Сумма двух векторов и произведение на число определяются соотношениями:

(λ1, λ2, ..., λn) + (μ1, μ2, ..., μn) =

= (λ1 + μ1, λ2 + μ2, ..., λn + μn),

α∙(λ1, λ2, ..., λn) = (α∙λ1, α∙λ2, ..., α∙λn).

Базисом в этом пространстве может служить, например, следующая система из n векторов: e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ...en = (0, 0, ..., 1).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]