Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(нет 31 и 38) а так вроде бы все.docx
Скачиваний:
18
Добавлен:
22.04.2019
Размер:
1.24 Mб
Скачать

1. Сложение матриц, имеющих один и тот же размер.

2. Умножение матриц подходящего размера (матрицу, имеющую n строк, можно умножить справа на матрицу, имеющую n столбцов).

3. Умножение матрицы на элемент основного кольца или поля.

Матрицей размера mХn называют прямоугольную таблицу, содержащую m строк и n столбцов.

Строки и столбцы матрицы последовательно нумеруются, и элемент матрицы, расположенный на пересечении i-ой строки и j-го столбца, обозначается символом а. Сами матрицы обычно обозначают заглавными буквами латинского алфавита.

Если число строк матрицы совпадает с числом столбцов (m = n), то матрицу называют квадратной. Элементы а11, а22, ..., аmm называются диагональными и образуют главную диагональ квадратной матрицы. Квадратная матрица называется треугольной, если равны нулю все ее элементы, расположенные ниже или выше главной диагонали. Квадратная матрица называется диагональной, если равны нулю все ее элементы, расположенные вне главной диагонали. Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной и обозначается буквой Е.

Определитель - число, характеризующее матрицу. Определителем матрицы 1-го порядка А=(а11) является единственный элемент этой матрицы. Определителем 2-го порядка называется число, характеризующее матрицу 2-го порядка, которое находится по следующему правилу: из произведений элементов главной диагонали вычитается произведение элементов второй диагонали матрицы А. Определитель третьего порядка – это число, получаемое так:

Формула показывает, что со своими знаками берутся члены, которые являются произведением элементов главной диагонали, а также элементов, расположенных в вершинах двух треугольников, основания которых ей параллельны; с противоположными – члены, являющиеся произведениями элементов побочной диагонали, а также элементов, расположенных в вершинах двух треугольников, которые ей параллельны.

Разложить определитель можно по любой строке или столбцу, то при разложении по полученной в результате линейной комбинации строке, определитель равен произведению ненулевого элемента этой строки на его алгебраическое дополнение.

.

Алгебраическим дополнением элемента aij матрицы A называется число

Aij = ( − 1)i + jMij, где Mij — дополнительный минор или определитель матрицы, получающейся из исходной матрицы A путем вычёркивания i -й строки и j -го столбца.

Умножение матрицы на число.

Умножение матрицы A на число λ заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен: bij = λaij.

Сложение матриц

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: cij = aij + bij.

Умножение матриц.

Умножение матриц (обозначение: AB, реже со знаком умножения AxB) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго:

Количество столбцов в матрице A должно совпадать с количеством строк в матрице B. Если матрица A имеет размерность mxn , B — nxk , то размерность их произведения AB = C есть mxk.

Транспонирование.

Транспонированную матрицу можно получить, поменяв строки и столбцы матрицы местами. A = (aij), то AT = (aji).

Симметричной матрицей называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Это означает, что она равна её транспонированной матрице.

Ранг матрицы

Количество линейно независимых строк матрицы называют строчным рангом матрицы, а количество линейно независимых столбцов матрицы называют столбцовым рангом матрицы. В действительности, оба ранга совпадают. Их общее значение и называется рангом матрицы.

Другой эквивалентный данному подход заключается в определении ранга матрицы, как максимального порядка отличного от нуля минора матрицы.

ОБРАТНАЯ МАТРИЦА

Обра́тная ма́трица — такая матрица A-1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

A*A-1 = A-1*A = E.

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной на транспонированную матрицу алгебраических дополнений элементов исходной матрицы.

C* - матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы.

МАТРИЧНЫЕ ОПЕРАЦИИ:

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица такая, что её прибавление к другой матрице A не изменяет A, то есть: A + 0 = A

Все элементы нулевой матрицы равны нулю.

Возводить в степень можно только квадратные матрицы.

Ассоциативность сложения: A + (B + C) = (A + B) + C.

Коммутативность сложения: A + B = B + A.

Ассоциативность умножения: A(BC) = (AB)C.

Дистрибутивность умножения относительно сложения:

A(B + C) = AB + AC.

(B + C)A = BA + CA.

Свойства операции транспонирования матриц:

(AT)T = A

(AB)T = BTAT

(A − 1)T = (AT) − 1, если обратная матрица A - 1 существует.

(A + B)T = AT + BT

detA = detAT .

Элементарными преобразованиями матрицы называются преобразования следующих трёх типов:

Перестановка двух строк или столбцов матрицы;

Умножение строки или столбца на число отличное от нуля;

Прибавление к одной строке или столбцу матрицы другой её строки или столбца, умноженной на любое число!

Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента

aij = .

Следствие: Определитель треугольной матрицы равен произведению диагональных элементов.

СВОЙСТВА ОПРЕДЕЛИТЕЛЯ:

Свойство 1. При замене строк столбцами (транспонировании) значение определителя не изменится, т.е.

.

Свойство 2. Если хотя бы один ряд (строка или столбец) состоит из нулей, то определитель равен нулю.

Свойство 3. Если в определителе поменять местами два соседних параллельных ряда (строки или столбцы), то определитель поменяет знак на противоположный, т.е.

.

Свойство 4. Если в определителе имеются два одинаковых параллельных ряда, то определитель равен нулю:

Свойство 5. Если в определителе два параллельных ряда пропорциональны, то определитель равен нулю:

Свойство 6. Если все элементы определителя, стоящие в одном ряду, умножить на одно и то же число, то значение определителя изменится в это число раз:

.

Следствие. Общий множитель, содержащийся во всех элементах одного ряда, можно вынести за знак определителя, например:

.

Свойство 7. Если в определителе все элементы одного ряда представлены в виде суммы двух слагаемых, то он равен сумме двух определителей:

.

Свойство 8. Если к элементам какого-либо ряда прибавить произведение соответствующих элементов параллельного ряда на постоянный множитель, то значение определителя не изменится:

.

Свойство 9. Если к элементам i-го ряда прибавить линейную комбинацию соответствующих элементов нескольких параллельных рядов, то значение определителя не изменится:

.

Следствие . Определитель единичной матрицы равен единице .

Система m линейных уравнений с n неизвестными в линейной алгебре — это система уравнений вида:

Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему обращает все её уравнения в тождества.

Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида может иметь одно или более решений.

Система линейных уравнений может быть представлена в матричной форме как:

Если к матрице А приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

15)

Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно). В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.

Определитель матрицы А обозначается как: det(A), |А| или Δ(A).

Определение через разложение по первой строке

Схема расчета определителя матрицы   .

Для матрицы первого порядка детерминантом является сам единственный элемент этой матрицы:

Для матрицы   детерминант определяется как

Для матрицы   определитель задаётся рекурсивно:

,    где   — дополнительный минор к элементу a1j. Эта формула называется разложением по строке.

В частности, формула вычисления определителя матрицы   такова:

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

Легко доказать, что при транспонировании определитель матрицы не изменяется (иными словами, аналогичное разложение по первому столбцу также справедливо, то есть даёт такой же результат, как и разложение по первой строке):

Определение через перестановки

Для матрицы   справедлива формула:

,

где α12,...,αn — перестановка чисел от 1 до nN12,...,αn) — число инверсий в перестановке, суммирование идёт по всем возможным перестановкам порядка n. Таким образом, в определитель войдёт n! слагаемых, которые также называют «членами определителя». Важно заметить, что во многих курсах линейной алгебры это определение даётся как основное.

Свойства определителей

  • Определитель — кососимметричная полилинейная функция строк (столбцов) матрицы. Полилинейность означает, что определитель линеен по всем строкам (столбцам):   , где   и т. д. — строчки матрицы,   — определитель такой матрицы.

  • При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится.

  • Если две строки (столбца) матрицы совпадают, то её определитель равен нулю.

  • Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю.

  • Если переставить две строки (столбца) матрицы, то её определитель умножается на (-1).

  • Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

  • Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю.

  • Сумма произведений всех элементов любой строки на их алгебраические дополнения равна определителю.

  • Сумма произведений всех элементов любого ряда на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.

  • Определитель произведения квадратных матриц одинакового порядка равен произведению их определителей (cм. также формулу Бине-Коши).

  • С использованием индексной нотации определитель матрицы 3×3 может быть определён с помощью символа Леви-Чивита из соотношения:

16)

Теорема Лапласа

Определение. Выделим в detA строки с номерами α1 < . . . < αk и столбцы

с номерами β1 < . . . < βk. Элементы aαjβ, стоящие в этих строках и

столбцах, образуют определитель k-го порядка:

M = A_ α1 . . . αk

β1 . . . βk _ def =______

aα1β1 . . . aα1βk

. . . . . .

aαkβ1 . . . aαkβk

______

Он называется минором k-го порядка определителя detA. Если же из

определителя detA вычеркиваются строки и столбцы с указанными номе-

рами, то получившийся определитель (n k)-го порядка

A_ αk+1 . . . αn

βk+1 . . . βn _ здесь {αk+1 < . . . < αn} ⊂ {1, 2, . . . , n} \ {α1, . . . αk}

{βk+1 < . . . < βn} ⊂ {1, 2, . . . , n} \ {β1, . . . βk}

называется минором, дополнительным минору M в detA. Число

_M def = (1)α1+...+αk+β1+...+βkA_ αk+1 . . . αn

βk+1 . . . βn _

называется алгебраическим дополнением минора M в detA.

Теорема 7.1 (Лаплас). Выделим в detA произвольные строки с номерами

α1 < . . . < αk. Образуем всевозможные миноры k-го порядка с элементами

из этих строк:

A_ α1 . . . αk

β1 . . . βk _ , здесь {β1 < . . . < βk} ⊂ {1, 2, . . . , n} .

Домножим эти миноры на их алгебраические дополнения в detA. Тогда ве-

личина detA равна сумме таких произведений по всем возможным выборкам

k элементов (β1, . . . , βk) из {1, 2, . . . , n}:

detA =

= _ 1β1<...<βkn

A_ α1 . . . αk

β1 . . . βk _A_ αk+1 . . . αn

βk+1 . . . βn _(1)_ α1+...+αk+

+β1+...+βk _ .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]