Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе экзамен.docx
Скачиваний:
11
Добавлен:
26.04.2019
Размер:
156.79 Кб
Скачать

65. Порядок и беспорядок в природе. Синергетика. Характеристики самоорганизующихся систем. Точка бифуркации. Значение синергетики для современной науки.

Синерге́тика (от др.-греч. συν- — приставка со значением совместности и ἔργον — «деятельность») — междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем). «…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…».

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, представляются одними и теми же (безотносительно природы систем), и для их описания должен быть пригоден общий математический аппарат.

С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. п. и т. д.

Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогично — и расширительное толкование применимости методов синергетики также подвергается критике.

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В обозначенных системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные.

Этот феномен трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного — к сложносоставному и более совершенному.

В отдельных случаях образование новых структур имеет регулярный, волновой характер и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Самоорганиза́ция — процесс упорядочения элементов одного уровня в системе за счёт внутренних факторов, без внешнего специфического воздействия (изменение внешних условий может также быть стимулирующим воздействием). Результат - появление единицы следующего качественного уровня.

В зависимости от подхода к описанию самоорганизации в определение включают характеристики системы, тип внутреннего фактора, особенности процесса.

Характеристики системы:

1.открытая (наличие обмена энергией/веществом с окружающей средой);

2.содержит неограниченно большое число элементов (подсистем);

3.имеется стационарный устойчивый режим системы, в котором элементы взаимодействуют хаотически (некогерентно).

Характеристики процесса:

1.интенсивный обмен энергией/веществом с окружающей средой, причём совершенно хаотически (не вызывая упорядочение в системе);

2.макроскопическое поведение системы описывается несколькими величинами — параметром порядка и управляющими параметрами (исчезает информационная перегруженность системы);

3.имеется некоторое критическое значение управляющего параметра (связанного с поступлением энергии/вещества), при котором система спонтанно переходит в новое упорядоченное состояние (переход к сильному неравновесию);

4.новое состояние обусловлено согласованным (когерентным) поведением элементов системы, эффект упорядочения обнаруживается только на макроскопическом уровне;

5.новое состояние существует только при безостановочном потоке энергии/вещества в систему. При увеличении интенсивности обмена система проходит через ряд следующих критических переходов; в результате структура усложняется вплоть до возникновения турбулентного хаоса.

Для однозначности определения термина, его связи с характеристиками системы и процесса, как правило, делается ссылка на один из трёх стандартных примеров самоорганизации:

1.лазер — пространственное упорядочение;

2.ячейки Рэлея — Бенара — пространственное упорядочение;

3.реакция Белоусова — Жаботинского — пространственно-временное упорядочение;

Нобелевский лауреат Илья Пригожин создал нелинейную модель реакции Белоусова — Жаботинского, так называемый брюсселятор. Так как для возникновения упорядочения в таких системах необходим приток энергии или отток энтропии, её диссипация, Пригожин назвал эти системы диссипативными. Вследствие нелинейности, наличия более одного устойчивого состояния в этих системах, в них не выполняется ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии.

По аналогии описания самоорганизующихся систем с фазовыми переходами диссипативная самоорганизация получила название фазового перехода в неравновесной системе.

Методы синергетики были использованы практически во всех научных дисциплинах: от физики и химии до социологии и филологии. Градообразование и нейронные сети описаны как диссипативные структуры. В последнее время практически исчезло использование первоначально необходимого математического аппарата нелинейных уравнений. Это привело к тому, что любая система естественного происхождения, не принадлежащая компетенции равновесной термодинамики, стала рассматриваться как самоорганизованная.

Точка бифуркации.

Точка бифуркации — смена установившегося режима работы системы. Термин из неравновесной термодинамики и синергетики.

Точка бифуркации — критическое состояние системы, при котором система становится неустойчивой относительно флуктуаций и возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. Термин из теории самоорганизации.

Свойства точки бифуркации.

1.Непредсказуемость. Обычно точка бифуркации имеет несколько веточек аттрактора (устойчивых режимов работы), по одному из которых пойдёт система. Однако заранее невозможно предсказать, какой новый аттрактор займёт система.

2.Точка бифуркации носит кратковременный характер и разделяет более длительные устойчивые режимы системы.