Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14k.docx
Скачиваний:
1
Добавлен:
07.07.2019
Размер:
66.63 Кб
Скачать

19. Принцип Ле Шателье

При известных ΔH реакции или при Δn ≠ 0 на химическое равновесие можно воздействовать изменением температуры или давления. Химическое равновесие может быть смещено изменением концентраций реагентов. Другими словами, равновесие можно сместить внешним воздействием, руководствуясь принципом Ле Шательеесли на равновесную систему оказывать внешнее воздействие, то равновесие смещается в сторону, противодействующую этому воздействию.

  1. Влияние температуры. Для реакций, идущих с уменьшением энтальпии (экзотермических), повышение температуры будет препятствовать протеканию прямого процесса, то есть смещать реакцию в сторону исходных веществ. Эндотермические реакции при этом будут смещаться в сторону конечных продуктов. Например, при обычных условиях реакция N2 + O2 не идет (ΔH > 0), но повышение температуры может сделать эти реакцию осуществимой. РеакцияCO + 1/2O2 = CO2, ΔH < 0 с повышением температуры будут смещаться в сторону исходных веществ.

  2. Влияние давления. Если реагируют газообразные вещества, то при неизменном числе молей начальных и конечных реагентов повышение общего давления не приведет к смещению равновесия. Если число молей при реакции меняется, то изменение общего давления приведет к смещению равновесия. В частности, реакция 2CO + O2 = 2CO2, протекающая с уменьшением Δn, при повышении общего давления сместится в сторону образования СO2.

  3. Влияние концентраций. В тех реакциях, в которых лучше оперировать концентрациями (реакции в растворах), увеличение концентраций исходных веществ приводит к смещению равновесия в сторону конечных продуктов и наоборот. Так, в реакции этерификации (образование сложного эфира) 

  4. увеличение концентрации уксусной кислоты или этанола увеличивает выход этилацетата, а добавление в систему воды приводит к омылению, т. е. образованию исходных продуктов.

20. РАВНОВЕСНОЕ СОСТОЯНИЕ - состояние, в к-рое приходит термодинамич. система при постоянных внеш. условиях. Р. с. характеризуется постоянством во времени термодинамич. параметров и отсутствием в системе потоков вещества и энергии (см. в ст. Равновесие термодинам ическое).

устойчивость равновесия термодинамического системы относительно малых вариаций её термодинамических параметров (объёма, давления, температуры и др.). В общем случае состояние равновесия характеризуется минимальным значением потенциала термодинамического, соответствующего независимым в условиях опыта переменным. Например, при независимых переменных энтропии, объёме и числе молей компонентов для термодинамического равновесия системы необходимо, чтобы была минимальна её внутренняя энергия U. Из этого требования вытекает, во-первых, что должна быть равна нулю первая вариация dU при малых вариациях переменных и постоянстве полной энтропии, объёма и числа частиц. Отсюда как условие равновесия следует постоянство температуры и давления для всех фаз, а также равенство значений химического потенциала для каждого из компонентов в сосуществующих фазах. Выполнение этих условий ещё не гарантирует Устойчивость термодинамическая системы. Из требования минимума U вытекает ещё одно условие – положительное значение второй вариации d2U. Оно приводит к ряду термодинамических неравенств, которые являются условиями термодинамической устойчивости. Например, одно из них состоит в положительном значении теплоёмкости системы при постоянном объёме, а другое – в убывании давления с ростом объёма при постоянной температуре.   В общем случае условие Устойчивость термодинамическая можно сформулировать в виде следующего принципа: внешнее воздействие, выводящее систему из состояния равновесия, стимулирует в нём процессы, стремящиеся ослабить результаты этого воздействия (см. Ле Шателье – Брауна принцип). Полная теория Устойчивость термодинамическая как для гомогенных, так и для гетерогенных систем была разработана в конце 19 в. Дж. У.Гиббсом.   Свойством Устойчивость термодинамическая может в определённой степени обладать и метастабильное равновесие, которому хотя и соответствует минимум внутренней энергии или др. термодинамического потенциала, но этот минимум лежит выше основного минимума, определяющего наиболее устойчивое состояние (см. Метастабильное состояние). 

21.  В основе процессов обмена клетки со средой и внутреннего метаболизма лежит сложная сеть организованных определенным образом во времени и пространстве различных реакций. В результате этих процессов изменяются концентрации различных веществ, численность отдельных клеток, биомасса организмов, могут изменяться и другие величины, например величина трансмембранного потенциала в клетке. Изменения всех этих переменных величин во времени и составляют кинетику биологических процессов. Основные исходные предпосылки при описании кинетики в биологических системах в общем такие же, как и в химической кинетике.

биологическая кинетика характеризуется следующими особенностями.

1. В качестве переменных выступают не только концентрации веществ, но и другие величины.

2. Переменные изменяются не только во времени, но и в пространстве.

3. Биологическая система пространственно гетерогенна, и условия взаимодействия реагентов могут быть различны в разных точках системы.

4. Существуют специальные механизмы саморегуляции, действующие по принципу обратной связи.

Основная задача в биофизике сложных систем состоит в том, чтобы получить характеристики различных динамических режимов и выяснить условия и значения параметров, при которых они реализуются в живой клетке.

22. Будь-яку кінетичну біологічну систему можна охарактеризувати як сукупність деяких параметрів, значення яких підтримуються незмінними протягом часу спостереження за системою, та змінних у часі. Параметрами є, наприклад, такі фізичні величини, як температура, вологість, електрична провідність мембрани, рН і т. д. Залежно від досліджуваних біосистем змінними вважаються: в екології – чисельність виду, у біофізиці – мембранний потенціал, у мікробіології – кількість мікроорганізмів, у біохімії – концентрація речовини тощо. процеси, які відбуваються в біологічних системах, як правило, є нелінійними; відповідно нелінійними є й математичні моделі цих процесів. Проте існують методи якісного аналізу диференціальних рівнянь, які дають можливість виявити важливі загальні властивості (закономірності) моделі, не знаходячи в явному вигляді невідомі функції. Ці методи базуються на таких експериментальних фактах. По-перше, різні функціональні процеси в біосистемах суттєво відрізняються один від одного за часом проходження або характерними швидкостями. Так, наприклад, у біосистемі одночасно мають місце швидкі процеси ферментативного каталізу (час обороту ферменту становить с), фізіологічні процеси (час – хвилини) та процеси репродукції (від кількох хвилин і більше). По-друге, якщо окремі (проміжні) стадії загального процесу в біосистемі характеризуються часом  і найповільніша стадія має час  такий, що , то визначальною ланкою всього процесу є -та стадія, і загальний час проходження процесу практично збігається з . Отже, наявність такої часової ієрархії процесів у біосистемі дає можливість значно спростити вихідну модель, звівши її, по суті, до кінетичного опису поведінки найбільш повільної стадії.

адекватні моделі реальності- Ті моделі, які можуть бути покладені в основу подальшого прогнозу, прийняття рішення та здійснення управління.

23. СТАЦИОНАРНОЕ СОСТОЯНИЕ БИОСИСТЕМ

Особенностью биосистем является то, что они не просто открытые системы, но системы, находящиеся в стационарном состоянии. При стационарном состоянии приток и отток энтропии происходят с постоянной скоростью, поэтому общая энтропия системы не меняется во времени (dS / dt = 0)..

Благодаря с.с. за счет непрерывного обмена энергией с внешней средой биосистемы не только находятся на удалении от термодинамического равновесия (низший возможный энергетический уровень, на котором энтропия системы максимальна) и сохраняют свою работоспособность, но и поддерживают во времени постоянство своих параметров. Немаловажно и то, что в стационарном состоянии биосистемы обладают способностью к авторегуляции.

По крайней мере два основных свойства характерны для стационарного состояния биосистем. Прежде всего это его энергетический уровень, который показывает, насколько далеко система удалена от термодинамического равновесия. Живой организм, как отмечал Оствальд, - это очаг установившихся стационарных состояний. Их уровни не случайны. Они возникли в процессе эволюции и обеспечивают организму наиболее выгодный энергетический обмен в данных конкретных условиях.

Особенностью биосистем является то, что многие протекающие в них процессы находятся на значительном удалении от термодинамического равновесия. В этих условиях для системы характерен очень интенсивный обмен энтропией с внешней средой, что обеспечивает возможность протекания в ней процессов самоорганизации и возникновение специфических динамических структур.

Другой интересной особенностью стационарного состояния является определенная степень его устойчивости. Если стационарное состояние достаточно устойчиво, то после не очень сильного отклонения от него, вызванного каким-либо возмущающим воздействием, система может вновь вернуться в исходное положение. Типичный пример такой устойчивости - содержание глюкозы в крови человека. Как известно, оно достаточно постоянно, но это постоянство поддерживается за счет непрерывного притока и оттока глюкозы. Если ввести в кровь какое-то количество этого углевода, то его содержание увеличится. Однако через некоторое время содержание глюкозы в крови вернется к исходному уровню.

Причина устойчивости стационарных состояний была вскрыта Пригожиным. Он доказал, что в стационарном состоянии биосистемы обладают очень интересным свойством. Если система не очень удалена от состояния термодинамического равновесия, член diS / dt в уравнении (1) при стационарном состоянии сохраняет свое положительное значение, но стремится к минимуму

24. Динамічні біосистеми, які описуються за допомогою звичайних диференціальних рівнянь, називаються точковими системами. Це означає, що в будь-якій точці такої системи значення шуканої величини (напр., концентрації речовини) зберігається з часом. Однак загальнішим є випадок, коли значення змінних є різними в різних точках простору. Наприклад, коли одночасно з реакцією, яка відбувається на деякій ділянці системи, реагенти дифундують, переходячи до іншої ділянки. 

25. Динамічні біосистеми, які описуються за допомогою звичайних диференціальних рівнянь, називаються точковими системами. Це означає, що в будь-якій точці такої системи значення шуканої величини (напр., концентрації речовини) зберігається з часом. Однак загальнішим є випадок, коли значення змінних є різними в різних точках простору. Наприклад, коли одночасно з реакцією, яка відбувається на деякій ділянці системи, реагенти дифундують, переходячи до іншої ділянки. 

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f 5d < 6p < 7s < 5f 6d...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s-орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d-, либо 4s-орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s-орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d. Оказалось, что у одних элементов более низкую энергию имеет 4f-подуровень, а у других - 5d-подуровень. То же самое наблюдается для 5f- и 6d-подуровней.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]