Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ КСЕ.doc
Скачиваний:
14
Добавлен:
03.09.2019
Размер:
663.55 Кб
Скачать

Контрольные вопросы

 

1.     В чем сущность периодического закона химических элементов?

2.     На чем основана структура периодической системы химических элементов?

3.     Что такое период, ряд и группы элементов?

 

 

 

Лекция 8. Мегамир: концепции теории относительности Пространство-время

 

В начале нашего столетия, в 1916 г., А. Эйнштейн создал общую теорию относительности. Иначе ее называют теорией пространства-времени.

 В математике свойства какого-либо пространства, или, как говорят, его метрика, определяются видом той линии, которая кратчайшим образом соединяет две произвольные точки в нем. Как известно из повседневного опыта, в пространстве, в котором мы живем, кратчайшее расстояние между двумя точками есть прямая линия. Такое пространство называется евклидовым.

 Из общей теории относительности Эйнштейна следует, что реальное пространство нашей Вселенной неевклидово. Более того, геометрия нашего пространства меняется с течением времени, а само время течет с разной скоростью в различных областях Вселенной. Именно поэтому общую теорию относительности называют, как упоминалось, теорией пространства-времени. Согласно этой теории, геометрические свойства пространства, изменение его геометрии со временем, а также скорость течения самого времени зависят от распределения и движения вещества – материи. В свою очередь, движение материи и распределение ее в пространстве зависят от его геометрии. Поэтому нельзя в действительности рассматривать отдельно поведение материи в неизменном, “застывшем” абсолютном пространстве, как это следовало из ньютоновских представлений. Оба процесса взаимосвязаны: распределение и движение материи изменяют геометрию пространства-времени, а изменение геометрии пространства-времени определяет характер распределения и движения в нем материи. Эти процессы самосогласованны. А это означает, что и пространство, и время не абсолютны, а относительны, они проявляют себя по-разному в зависимости от конкретных условий.

 Согласно общей теории относительности, степень искривления пространства, т. е. степень отклонения его от евклидовой геометрии, сильнее там, где материя обладает большей энергией. В этих же условиях время течет медленнее.

 Каковы же те расстояния во Вселенной, на которых уже заметна кривизна нашего пространства? Расстояния в космосе измеряют парсеками или световыми годами. Один парсек (пс) равен 3×1018 см, а световой год – это расстояние, которое проходит свет за 1 год. Поскольку скорость света с = 300 000 км/с, а 1 год = 3×107 с, то световой год соответствует расстоянию 0,9×1018 см ~ 0,3 пс. Расстояние от Солнца до Земли приблизительно равно 1,5×1013 см, т.е. 1,5×10-5 пс. Ближайшие звезды удалены от нас на расстояние в несколько парсек. Размеры нашей Галактики, содержащей приблизительно 100 миллиардов звезд, порядка 30 000 пс. Но и эти расстояния малы, на них кривизна пространства еще не проявляется. Она начинает проявляться лишь на расстояниях, исчисляемых десятками и сотнями миллионов парсек.

 До сих пор мы говорили о геометрии пространства Вселенной в целом. Однако искривление пространства и изменение скорости течения времени могут заметно проявляться и в отдельных небольших участках нашей Вселенной, а именно там, где имеются сильные гравитационные поля. Такая ситуация возникает, например, вблизи так называемых черных дыр – особых областей пространства-времени.

 Кривизна пространства проявляется и в менее экзотических условиях. Она становится уже заметной вблизи достаточно массивных тел, таких, например, как Солнце, масса которого равна 2×1033 г. Именно таким образом была осуществлена одна из первых наблюдательных проверок общей теории относительности. Как известно, свет распространяется всегда кратчайшим путем от источника к наблюдателю. Поэтому если бы на Земле можно было увидеть отклонение (по отношению к контрольным звездам) луча света далекой звезды, проходящего у края солнечного диска, то это как раз и означало бы, что пространство вблизи Солнца (массивного тела) искривлено. Потому что это, в свою очередь, означало бы, что вблизи Солнца свет движется не по прямой линии, а по некоторой искривленной траектории. Разумеется, такой опыт можно поставить во время солнечного затмения, чтобы свет Солнца не мешал наблюдать слабый свет, идущий от далекой звезды. Когда такой опыт был поставлен, он подтвердил правильность теории пространства-времени, созданной Эйнштейном.