Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нечеткие знания -вероятностные подходы.doc
Скачиваний:
5
Добавлен:
19.09.2019
Размер:
113.15 Кб
Скачать

Неточный вывод на основе фактора уверенности

Стэндфордская теория фактора уверенности основывается на понятии Меры уверенности (или доверия). Это неформальная оценка, которую человек эксперт добавляет к заключению:”вероятно, это так”,"это совершенно невероятно".

Стэндфордская теория фактора уверенности вводит некоторые простые предположения о мере доверия и предлагает правила для объединения свидетельств при выводе: заключений.

Первым допущением является разделение меры доверия и недоверия ("за' и "против") для каждого отношения.

Пусть МВ(Н\ Е) — мера уверенности в гипотезе Н при заданном свидетельстве Е. Обозначим через MD( Н \ Е) меру недостоверности гипотезы Н при заданном свидетельстве Е.

Тогда:

1 > МВ(Н\Е) > О, если MD(H\ E)=0,

ИЛИ

1 > MD(H\E) > О, еспли МВ(Н\Е)=0.

Эти две меры накладывают ограничения друг на друга, так как заданной считается часть свидетельства в пользу данной гипотезы, либо против нее. В этом состоит важное различие между алгеброй уверенности и теорией вероятности. Если связь между мерами доверия недостоверности установлена, их можно снова объединить следующим образом.

CF(H\E) = МВ(Н\Е) MD(H\E).

С приближением фактора уверенности CF (certainty factor) к 1 усиливается доверие гипотезе, а с приближением CF к -1 — ее отрицание. Близость значения CF к 0 означает, что доказательств в пользу гипотезы и против нее слишком мало, либо эти свидетельства сбалансированы.

Когда эксперты формируют базу правил, они сопоставляют с каждым правилом определенное значение CF. Фактор CF отражает их уверенность в надежности правила.

Предпосылка каждого правила состоит из ряда фактов, связанных операциями конъ­юнкции и дизъюнкции. При использовании продукционного правила учитываются фак­торы доверия, связанные с каждым условием предпосылки. Их сочетание определяет ме­ру доверия всей предпосылке следующим образом. Для предпосылок Р1 и Р2

CF(P1 and Р2) - MIN(CF(P1), CF(P2))

И

CF(P1 or P2) = MAX(CF(P1), CF(P2)).

Для получения фактора уверенности в заключении правила объединенный фактор уверенности в предпосылках CF, полученный с помощью приведенных выше правил, умножается на CF самого правила.

Рассмотрим, например, следующее правило базы знаний

(Р1 and P2) оr РЗ-> R1(0,7) and R2 (0,3),

где P1, P2 и РЗ — предпосылки, а

R1 и R2 — заключения правила с фактором доверия CF, равным 0,7 и 0,3 соответственно.

Эти числа добавляются к правилу при его разра­ботке и представляют уверенность эксперта в выводе, если все предпосылки известны с полной определенностью. Если в процессе выполнения программы для PI, P2 и РЗ по­лучены значения CF, равные 0,6, 0,4 и 0,2 соответственно, то в данном случае Я1 и Я2 следует учитывать с факторами доверия CF, равными 0,28 и 0,12 соответственно. Ниже приводятся вычисления для этого примера.

CF(P1(0,6) andP2(0,4)) = MIN(0,6; 0,4) = 0,4

CF((0,4) or P3(0,2)) = МАХ(0,4; 0,2) = 0,4

Значение CF для R1 в описании правила равно 0,7, так что R1 добавляется ко множе­ству конкретных знаний о данной ситуации со значением

CF= (0,7)* (0,4) = 0,28.

Значение CF для Я2 в общем правиле равно 0,3, так что Я2 добавляется ко множеству знаний о данной ситуации со значением

CF (0,3) * (0,4) = 0,12.

Требуется определить еще одну метрику. Как объединить несколько значений CF, ес­ли два или более правил приводят к одному и тому же результату R? Правило для этого случая отражает аналогию алгебры достоверности с теорией вероятности. Меры доверия при объединении независимых свидетельств перемножаются.

Многократно используя это правило, можно объединять результаты любого количества правил, используемых для определения результата R.

Если CF(R1) представляет фактор доверия результату , а ранее не использованное правило приводит к результату R (снова) со значением CF(R2), то новое значение СF результата R вычисляется следующим образом:

CF(R1) + CF(R2) - (CF(R1)* CF(R2)),

если CF( R1) и CF( R2) положительны,

CF(R1) + CF(R2) + (CF(R1) * CF(R2)),

если CF(R1) и CF(R2) отрицательны и

CF(R1) + CF(R2)

1-MIN(|CF(R1) | , | CF(R2) |)

во всех остальных случаях, где | Х| — абсолютное значение X.

Кроме легкости вычислений эти комбинационные уравнения имеют другие по­лезные свойства.

1) Значение фактора CF, вычисленное согласно этому правилу, всегда будет лежать между 1 и -1.

2) В результате объединения противоположные значения CF сокращаются, что тоже является положительным моментом.

3) Комбинированная мера CF является монотонно возрастаю­щей (убывающей) функцией, что в какой-то мере и следовало ожидать для обобщен­ного свидетельства.

Подход, основанный на стэндфордском факторе уверенности, позволяет специалисту по знаниям описать все эти взаимосвязи одним фактором CF доверия правилу, т.е.

if A and В and С then D{CF).

Эта простая алгебра лучше отражает способ мышления человека-эксперта.