Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы электроника.docx
Скачиваний:
8
Добавлен:
20.09.2019
Размер:
1.21 Mб
Скачать

Четвертьволновой трансформатор

  • Четвертьволновой трансформатор — отрезок СВЧ линии передачи, длина которого равна четверти длины волны, возбуждаемой в этой линии. Входное сопротивление такого отрезка обратно пропорционально сопротивлению её нагрузки:

ZВх = ρ2 / ZВых

где Z — входной и выходной импеданс, ρволновое сопротивление отрезка линии.

  • Трансформатор обеспечивает эффективное согласование в полосе частот ±20% от средней частоты.

  • Конструктивно четвертьволновой трансформатор выполняется в виде отрезка кабеля или как самостоятельное устройство в виде отрезка жесткой коаксиальной линии с с разъёмами.

Стационарный случайный процесс

На практике часто встречаются случайные процессы, протекающие однородно во времени. Они имеют вид непрерывных случайных колебаний вокруг неслучайного значения. Амплитуда и характер колебаний в среднем не меняются со временем, такие процессы называются стационарными. Например: колебание напряжения, давление газа в газопроводе, колебание самолета вокруг центра тяжести. У стационарного с.п. X(t) все вероятностные характеристики не должны зависеть от времени. Рассмотрим одномерную плотность распределения стационарного случайного процесса f(t,x). Так как эта плотность не зависит от того, где взято сечение t, то имеет место равенство f(t1,x) = f(t2,x) = … = f(x)

Зная одномерную плотность стационарного с.п. X(t), можно найти его м.о. и дисперсию: , . Таким образом, у стационарного с.п. математическое ожидание и дисперсия являются постоянными величинами, не зависящими от времени.

Рассмотрим n сечений стационарного с.п. X(t), взятых в моменты времени t1, t2, …, tn; n-мерную плотность распределения можно записать в виде: fn( t1, t2, … , tn; x1, x2,…,xn ). Очевидно, что если с.п. является стационарным, то эта n-мерная плотность распределения не изменится при сдвигу всех аргументов на одинаковую величину τ fn( t1, t2, … , tn; x1, x2,…,xn ) = fn( t1 + τ, t2 + τ, … , tn + τ; x1, x2,…,xn ).

Случайный процесс X(t) называется стационарным в узком смысле, если его n-мерная плотность распределения не изменяется при сдвиге всех его аргументов на одинаковую произвольную величину τ.

Обозначим τ = t2 – t1, тогда f2(t1, t2, x1, x2) = f2(τ, x1, x2). Случайный процесс называется стационарным в широком смысле, если его математическое ожидание постоянно (mx = const), а корреляционная функция есть функция сдвига между аргументами: Kx(t1,t2) = Kx(τ).

Свойства корреляционной функции стационарного процесса:

  1. Kx(τ) = Kx(-τ)

  2. Kx(0) = Dx

  3. | Kx(τ)| ≤ Dx

Эргодическое свойство стационарного с.п.

Рассмотрим стационарный с.п. X(t)

На рисунке стационарный процесс и каждая реализация обладает одними и теми же характеристиками. Если мы выберем одну реализацию, то её характеристики будут мало отличаться от характеристик других реализаций. Одна реализация может заменить все остальные. Для эргодического процесса одна из произвольно выбранных реализаций при достаточно большом времени может дать достаточно хорошее представление о всем процессе.

Стационарные процессы могут обладать или не обладать эргодическим свойством. При рассмотрении Марковских процессов с дискретными состояниями мы вводили понятие эргодического множества состояний. Если процесс протекает однородно и множество состояний конечно и обладает эргодическим свойством, то в нем устанавливается стационарный режим функционирования, характеризующийся тем, что любая реализация этого процесса рано или поздно пройдет через любое состояние независимо от того, в каком состоянии находился этот процесс в начальный мом ент времени. Другими словами, эргодическое свойство состоит в том, что любая реализация эргодического стационарного с.п.  достаточной продолжительности пройдет через любое состояние данного процесса, независимо от того в каком состоянии процесс находился в начальный момент времени.

Стационарный процесс обладает свойством эргодичности, если его характеристики найденные усреднением множества реализаций совпадают с соответствующими характеристиками, полученными усреднением по времени одной реализации на достаточно большом интервале. Матожидание:                      Достаточным условием эргодичности с.п. X(t) по математическому ожиданию - является условие :  Дисперсия:                            Достаточным условием эргодичности с.п. X(t) по дисперсии - является условие :   , где Ky(τ) – корреляционная функция с.п. Y(t) = [X(t)]2. Корреляционная функция:  , нахождение корреляции усреднением по времени.  , если выполняется данное условие, то такой с.п. называется эргодичным относительно корреляционной функции.

 достаточное условие эргодичности по к.ф.

Обычно стационарный с.п. бывает неэргодическим, когда он протекает неоднородно. В частности неэргодичность с.п. X(t) может быть вызвана тем, что в качестве слагаемого с.п. рассматривается с.в. Например, случайный процесс Y(t) = X(t) + U будет неэргодическим.

Характеристики: my(t) = mx + mu Ky(τ) =Kx(τ) + Du

9. Спектры последовательности прямоугольных импульсов и одиночного импульса

Спектр периодической последовательности прямоугольных импульсов 

Рассмотрим периодическую последовательность прямоугольных импульсов, изображенную на рис. 5. Данный сигнал характеризуется длительностью импульса, его амплитудой и периодом. По вертикальной оси откладывается напряжение.

 

Рис.5. Периодическая последовательность прямоугольных импульсов

 

Начало отсчета выберем в середине импульса. Тогда сигнал разлагается только по косинусам. Частоты гармоник равны n/T , где - любое целое число. Амплитуды гармоник согласно (1.2.) будут равны:

    

так как V(t)=Е при   , где    - длительности импульса и V(t)=0 при   , то 

Эту формулу удобно записать в виде:

  (2.1.)

 

Формула (1.5.) дает зависимость амплитуды n-ой гармоники от периода и длительности в виде непрерывной функции (функция   ). Эту функцию называют огибающей спектра. Следует иметь ввиду, что физический смысл она имеет только на частотах, где существуют соответствующие гармоники. На рис. 6 приведен спектр периодической последовательности прямоугольных импульсов.

Рис.6. Спектр периодической последовательности

прямоугольных импульсов.

 

При построении огибающей имеем ввиду, что    - является

 осцилирующей функцией частоты, а знаменатель монотонно возрастает с ростом частоты. Поэтому получается квазиосцилирующая функция с постепенным убыванием. При частоте стремящейся к нулю, к нулю стремятся одновременно и числитель и знаменатель, их отношение стремится к единице (первый классический предел). Нулевые значения огибающей возникают в точках где   т. е.

  

, где m – целое число (кроме m=0). Переходя от циклической частоты к частоте в Гц, получаем:

 

      (2.2.)

 

Эти значения отмечены на рис. 6.

Огибающая ограничивает на графике амплитуды гармоник. Форма огибающей определяется формой и длительностью импульса, а частоты гармоник только его периодом /2/Это утверждение, полученное для прямоугольных импульсов справедливо и для других периодических сигналов.

Для того чтобы применить данные о периодическом сигнале к одиночному импульсу представим, что этот импульс повторяется с некоторым периодом Т и устремим этот период к бесконечности. Расстояние между соседними гармониками в спектре периодического сигнала равно 1/T . Следовательно, для T стремящегося к бесконечности расстояние между гармониками стремится к нулю, т. е. они сливаются. Амплитуды этих гармоник, стремятся к нулю, т. к. интеграл берется только в пределах существования импульса (вне импульса v(t)=0 ), а Т в знаменателе неограниченно возрастает.

Итак, отдельных гармоник в спектре одиночного импульса не будет. Этот спектр является сплошным (в него входят все частоты).

Очевидно, нулевые амплитуды гармоник не могут использоваться для описания спектра.

Для характеристики одиночных импульсов вводят новую характеристику: спектральную плотность S(f). Под спектральной плотностью понимают предел отношения амплитуды гармоник к расстоянию между соседними при Т стремящемся к бесконечности.

Удобно рассмотреть это на примере четного сигнала. Согласно определению:

  (4.1.)

где f=1/T- расстояние между соседними гармониками.

  (4.2.)

Интегрировать достаточно в пределах до  , так как дальше v(t)=0. Поэтому

     (4.3.)

Видно, что выражение для S(w) и для огибающей В(w) отличаются только константой (периодом в знаменателе В(w)).

Зависимость спектральной плотности от частоты для одиночного импульса полностью повторяет форму огибающей Вi(w) для периодической последовательности таких же импульсов.

На рис. 8 приведены для примера спектры периодической последовательности прямоугольных импульсов и одиночного импульса:

 

Рис.8. Сравнение периодического и непериодического

сигналов и их спектров

 

 Зависимость S(f) в отличие от Вi(w) изображается сплошной линией, а не пунктиром, так как S(f) существует во всех точках графика. Для импульса общего вида (не являющегося четным) следует вводить отдельно спектральную плотность для Sin и Cos  в разложении Фурье или, что обычно и делается, применять метод комплексных амплитуд и рассматривать спектральную плотность в комплексном виде S`(w).

При использовании комплексной спектральной плотности S`(w) для одиночного импульса ряд Фурье переходит в преобразования Фурье:

      (4.4.)

            Формулы (4.4.) представляют прямую и обратную зависимость сигнала и его спектра. Интегрирование чаще всего производится в пределах существования сигнала. Например, импульс будет существовать (не быть равным нулю) только в течение его длительности

10. Транзисторы. Ключевой транзисторный каскад. Транзи́стор (англ. transistor) — электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логикапамятьпроцессорыкомпьютерыцифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 25 нм[источник не указан 387 дней]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

Классификация транзисторов

p-n-p

канал p-типа

n-p-n

канал n-типа

Биполярные

Полевые

Обозначение транзисторов разных типов. Условные обозначения: Э — эмиттер, К — коллектор, Б — база; З — затвор, И — исток, С — сток.

По основному полупроводниковому материалу

Помимо основного полупроводникового материала, применяемого обычно в виде монокристалла, транзистор содержит в своей конструкции легирующие добавки к основному материалу, металл выводов, изолирующие элементы, части корпуса (пластиковые или керамические). Иногда употребляются комбинированные наименования, частично описывающие материалы конкретной разновидности (например, «кремний на сапфире» или «Металл-окисел-полупроводник»). Однако основными являются транзисторы:

  • Германиевые

  • Кремниевые

  • Арсенид-галлиевые

Другие материалы транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основеуглеродных нанотрубок.

[править]По структуре

 

 

 

Транзисторы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Биполярные

 

 

 

 

 

Полевые

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-n-p

 

n-p-n

 

С p-n-переходом

 

С изолированным затвором

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С каналом n-типа

 

С каналом p-типа

Со встроенным каналом

 

С индуцированным каналом

Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры, поэтому подробная информация об этом отнесена в соответствующие статьи.

  • Биполярные

    • n-p-n структуры, «обратной проводимости».

    • p-n-p структуры, «прямой проводимости»

  • Полевые

    • с p-n переходом

    • с изолированным затвором

  • Однопереходные

  • Криогенные транзисторы (на эффекте Джозефсона)[источник не указан 766 дней]

Комбинированные транзисторы

  • Транзисторы со встроенными резисторами (Resistor-equipped transistors (RETs)) — биполярные транзисторы со встроенными в один корпус резисторами.

  • Транзистор Дарлингтона — комбинация двух биполярных транзисторов, работающая как биполярный транзистор с высоким коэффициентом усиления по току.

    • на транзисторах одной полярности

    • на транзисторах разной полярности

  • Лямбда-диод — двухполюсник, комбинация из двух полевых транзисторов, имеющая, как и туннельный диод, значительный участок с отрицательным сопротивлением.

  • Биполярный транзистор с изолированным затвором (IGBT) — силовой электронный прибор, предназначенный в основном, для управления электрическими приводами.

По мощности

По рассеиваемой в виде тепла мощности различают:

  • маломощные транзисторы до 100 мВт

  • транзисторы средней мощности от 0,1 до 1 Вт

  • мощные транзисторы (больше 1 Вт).

[править]По исполнению

  • дискретные транзисторы

    • корпусные

      • Для свободного монтажа

      • Для установки на радиатор

      • Для автоматизированных систем пайки

    • бескорпусные

  • транзисторы в составе интегральных схем.

[править]По материалу и конструкции корпуса

  • металло-стеклянный

  • пластмассовый

  • керамический

[править]Прочие типы

  • Одноэлектронные транзисторы содержат квантовую точку (т. н. «остров») между двумя туннельными переходами. Ток туннелирования управляется напряжением на затворе, связанном с ним ёмкостной связью.[1]

  • Биотранзистор

[править]Выделение по некоторым характеристикам

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус резисторами. RET транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для контроля входного сигнала микросхем или для переключения меньшей нагрузки на светодиоды.

Применение гетероперехода позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как HEMT.

[править]Применение транзисторов

Вне зависимости от типа транзистора, принцип применения его един:

  • Источник питания питает электрической энергией нагрузку, которой может быть громкоговорительрелелампа накаливания, вход другого, более мощного транзистора,электронной лампы и т.п. Именно источник питания даёт нужную мощность для "раскачки" нагрузки.

  • Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв, между источником питания и нагрузкой. Т.е. транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.

  • Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора гораздо меньше напряжения и силы тока в выходной цепи. Таким образом, за счёт контролируемого управления источником питания, достигается усиление сигнала.

  • Если мощности входного сигнала недостаточно для "раскачки" входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типа мультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

  • Усилительных схемах. Работает, как правило, в усилительном режиме.[2][3] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[4][5] Транзисторы в таких усилителях работают в ключевом режиме.

  • Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

  • Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах. Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

       Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:     • Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);     • Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;     • В эмиттерной цепи транзистора бежит два тока - ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;     • Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников - коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он - h21. Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение - 50);     • Коллекторное (Rк) и эмиттерное (Rэ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада Rвх=Rэ*h21, а выходное равно Rвых=Rк. Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора Rэ;     • Номиналы резисторов Rк и Rэ ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

      Питающее напряжение Uи.п.=12 В.        Выбираем транзистор, например: Транзистор КТ315Г, для него:        Pmax=150 мВт; Imax=150 мА; h21>50.        Принимаем Rк=10*Rэ        Напряжение б-э рабочей точки транзистора принимаем Uбэ = 0,66 В

Решение:

      1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем Pрас.max=0,8*Pmax=0,8*150 мВт=120 мВт

      2. Определим ток коллектора в статическом режиме (без сигнала):

Iк0=Pрас.max/Uкэ0=Pрас.max/(Uи.п./2) = 120мВт/(12В/2) = 20мА.

      3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(Rк+Rэ)=(Uи.п./2)/Iк0 = (12В/2)/20мА=6В/20мА = 300 Ом.

      Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение Rк=10*Rэ, находим значения резисторов :

Rк = 270 Ом; Rэ = 27 Ом.

      4. Найдем напряжение на коллекторе транзистора без сигнала.

Uк0=(Uкэ0+ Iк0*Rэ)=(Uи.п.- Iк0*Rк) = (12 В - 0,02А * 270 Ом) = 6,6 В.

      5. Определим ток базы управления транзистором:

Iб=Iк/h21=[Uи.п./(Rк+Rэ)]/h21 = [12 В / (270 Ом + 27 Ом)] / 50 = 0,8 мА.

      6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения Rб1,Rб2. Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы Iб, чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

Rб1,Rб2Iдел.=10*Iб = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

Rб1+Rб2=Uи.п./Iдел. = 12 В / 0,008 А = 1500 Ом.

      7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

Uэ=Iк0*Rэ = 0,02 А * 27 Ом= 0,54 В,

где Iк0 - ток покоя транзистора.

      8. Определяем напряжение на базе

Uб=Uэ+Uбэ=0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

Rб2= (Rб1+Rб2)*Uб/Uи.п. = 1500 Ом * 1,2 В / 12В = 150 Ом

Rб1= (Rб1+Rб2)-Rб2 = 1500 Ом - 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду , в связи с тем, что через резистор Rб1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: Rб1=1,3 кОм.

      9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

Расчёт ключевого режима транзисторного каскада

      Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки "покоя", находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор Rб1. Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор Rб2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газахвакууме иполупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры —радиоприёмникамагнитофонаизмерительного прибора и т. д.

Каскады усиления

  • Каскад усиления — ступень усилителя, содержащая один или несколько усилительных элементов, цепи нагрузки и связи с предыдущими или последующими ступенями.

  • В качестве усилительных элементов обычно используются электронные лампы или транзисторы (биполярные, полевые), иногда, в некоторых специальных случаях, могут применяться и двухполюсники, например, туннельные диоды (используется свойство отрицательного сопротивления) и др. Полупроводниковые усилительные элементы (а иногда и вакуумные) могут быть не только дискретными (отдельными) но и интегральными (в составе микросхем), часто в одной микросхеме реализуется полностью законченный усилитель.

  • В зависимости от способа включения усилительного элемента различаются каскады с общей базой, общим эмиттером, общим коллектором (эмиттерный повторитель) (у биполярного транзистора), с общим затвором, общим истоком, общим стоком (истоковый повторитель) (у полевого транзистора) и с общей сеткой, общим катодом, общим анодом (у ламп)

    • Каскад с общим эмиттером (истоком, катодом) — наиболее распространённый способ включения, позволяет усиливать сигнал по току и напряжению одновременно, сдвигает фазу на 180°, то есть является инвертирующим.

    • Каскад с общей базой (затвором, сеткой) — усиливает только по напряжению, применяется редко, является наиболее высокочастотным, фазу не сдвигает.

    • Каскад с общим коллектором (стоком, анодом) — называется также повторителем (эмиттерным, истоковым, катодным), усиливает ток, оставляя напряжение сигнала равным исходному. Применяется в качестве буферного усилителя. Важными свойствами повторителя являются его высокое входное и низкое выходное сопротивления, фазу не сдвигает.

    • Каскад с распределенной нагрузкой — каскад, занимающий промежуточное положение между схемой включения с общим эмиттером и общим коллектором. Как вариант каскада с распределенной нагрузкой, выходной каскад усилителя мощности «двухподвес». Важными свойствами являются задаваемый элементами схемы фиксированный коэффициент усиления по напряжению и низкие нелинейные искажения. Выходной сигнал дифференциальный.

  • Каскодный усилитель — усилитель, содержащий два активных элемента, первый из которых включен по схеме с общим эмиттером (истоком, катодом), а второй — по схеме с общей базой (затвором, сеткой). Каскодный усилитель обладает повышенной стабильностью работы и малой входной ёмкостью. Название усилителя произошло от словосочетания «КАСКад через катОД» (англ. CASCade to cathODE)[1]

  • Каскады усиления могут быть однотактными и двухтактными.

    • Однотактный усилитель — усилитель, в котором входной сигнал поступает во входную цепь одного усилительного элемента или одной группы элементов, соединённых параллельно.

    • Двухтактный усилитель — усилитель, в котором входной сигнал поступает одновременно во входные цепи двух усилительных элементов или двух групп усилительных элементов, соединённых параллельно, со сдвигом по фазе на 180°.

11. Линейные цепи с распределенными параметрами. Линии без потерь. Коэффициент отражения от конца линии. Коэффициенты бегущей и стоячей волны. В предыдущих лекциях рассматривались электрические цепи, геометрические размеры которых, а также входящих в них элементов не играли роли, т.е. электрические и магнитные поля были локализованы соответственно в пределах конденсатора и катушки индуктивности, а потери мощности – в резисторе. Однако на практике часто приходится иметь дело с цепями (линии электропередачи, передачи информации, обмотки электрических машин и аппаратов и т.д.), где электромагнитное поле и потери равномерно или неравномерно распределены вдоль всей цепи. В результате напряжения и токи на различных участках даже неразветвленной цепи отличаются друг от друга, т.е. являются функциями двух независимых переменных: времени t и пространственной координаты x. Такие цепи называются цепями с распределенными параметрами. Смысл данного названия заключается в том, что у цепей данного класса каждый бесконечно малый элемент их длины характеризуется сопротивлением, индуктивностью, а между проводами – соответственно емкостью и проводимостью.

Для оценки, к какому типу отнести цепь: с сосредоточенными или распределенными параметрами – следует сравнить ее длину l с длиной электромагнитной волны   . Если   , то линию следует рассматривать как цепь с распределенными параметрами. Например, для   , т.е. при   , и   . Для   , т.е. уже при    к линии следует подходить как к цепи с распределенными параметрами.

Для исследования процессов в цепи с распределенными параметрами (другое название – длинная линия) введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности, сопротивления, емкости и проводимости. Такую линию называют однородной. Линию с неравномерным распределением параметров часто можно разбить на однородные участки.

 

Уравнения однородной линии в стационарном режиме

Под первичными параметрами линии будем понимать сопротивление   , индуктивность   , проводимость    и емкость   , отнесенные к единице ее длины. Для получения уравнений однородной линии разобьем ее на отдельные участки бесконечно малой длины    со структурой, показанной на рис. 1.

П усть напряжение и ток в начале такого элементарного четырехполюсника равны u и i, а в конце соответственно    и   .

Разность напряжений в начале и конце участка определяется падением напряжения на резистивном и индуктивном элементах, а изменение тока на участке равно сумме токов утечки и смещения через проводимость и емкость. Таким образом, по законам Кирхгофа

или после сокращения на 

 ;    

(1)

 .     

(2)

Теорию цепей с распределенными параметрами в установившихся режимах будем рассматривать для случая синусоидального тока. Тогда полученные соотношения при   можно распространить  и на цепи постоянного тока, а воспользовавшись разложением в ряд Фурье – на линии периодического несинусоидального тока.

Вводя комплексные величины и заменяя    на   , на основании (1) и (2) получаем

 ;

(3)

 , 

(4)

где    и    - соответственно комплексные сопротивление и проводимость на единицу длины линии.

Продифференцировав (3) по х и подставив выражение    из (4), запишем

 .

Характеристическое уравнение

 ,

откуда

 .

Таким образом,

 ,

(5)

где    - постоянная распространения;    - коэффициент затухания;    - коэффициент фазы.

Для тока согласно уравнению (3) можно записать

 ,

(6)

где    - волновое сопротивление.

Волновое сопротивление    и постоянную распространения    называют вторичными параметрами линии, которые характеризуют ее свойства как устройства для передачи энергии или информации.

Определяя    и   , на основании (5) запишем

 .

(7)

Аналогичное уравнение согласно (6) можно записать для тока.

Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая – убывания. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени.

В олну, движущую от начала линии в сторону возрастания х, называют прямой, а движущуюся от конца линии в направлении убывания х – обратной.

На рис. 2 представлена затухающая синусоида прямой волны для моментов времени    и       . Перемещение волны характеризуется фазовой скоростью. Это скорость перемещения по линии неизменного фазового состояния, т.е. скорость, с которой нужно перемещаться вдоль линии, чтобы наблюдать одну и ту же фазу волны:

 .

(8)

Продифференцировав (8) по времени, получим

 .

(9)

Длиной волны    называется расстояние между двумя ее ближайшими точками, различающимися по фазе на    рад. В соответствии с данным определением

 ,

откуда

и с учетом (9)

 .

В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, - перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:

 ,

(10)

где в соответствии с (5)    и .

Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провод а к нижнему.

Аналогично для тока на основании (6) можно записать

 ,

(11)

где    и   .

Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока    (от начала к концу линии), а положительное направление обратной волны ему противоположно.

На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома

;

 .

 

Рассмотрим теоретически важный случай бесконечно длинной однородной линии.

Бесконечно длинная однородная линия. Согласованный режим работы

В случае бесконечно длинной линии в выражениях (5) и (6) для напряжения и тока слагаемые, содержащие   , должны отсутствовать, т.к. стремление    лишает эти составляющие физического смысла. Следовательно, в рассматриваемом случае   . Таким образом, в решении уравнений линии бесконечной длины отсутствуют обратные волны тока и напряжения. В соответствии с вышесказанным

;

.

(12)

На основании соотношений (12) можно сделать важный вывод, что для бесконечно длинной линии в любой ее точке, в том числе и на входе, отношение комплексов напряжения и тока есть постоянная величина, равная волновому сопротивлению:

 .

Таким образом, если такую линию мысленно рассечь в любом месте и вместо откинутой бесконечно длинной части подключить сопротивление, численно равное волновому, то режим работы оставшегося участка конечной длины не изменится. Отсюда можно сделать два вывода:

Уравнения бесконечно длинной линии распространяются на линию конечной длины, нагруженную на сопротивление, равное волновому. В этом случае также имеют место только прямые волны напряжения и тока.

У линии, нагруженной на волновое сопротивление, входное сопротивление также равно волновому.

Режим работы длинной линии, нагруженной на сопротивление, равное волновому, называется согласованным, а сама линия называется линией с согласованной нагрузкой.

Отметим, что данный режим практически важен для передачи информации, поскольку характеризуется отсутствием отраженных (обратных) волн, обусловливающих помехи.

Согласованная нагрузка полностью поглощает мощность волны, достигшей конца линии. Эта мощность называется натуральной. Поскольку в любом сечении согласованной линии сопротивление равно волновому, угол сдвига    между напряжением и током неизменен. Таким образом, если мощность, получаемая линией от генератора, равна   , то мощность в конце линий длиной    в данном случае

 ,

откуда КПД линии

и затухание

 .

Как указывалось при рассмотрении четырехполюсников, единицей затухания является непер, соответствующий затуханию по мощности в    раз, а по напряжению или току – в    раз

линии без потерь- Для высокочастотных коротких линий, применяемых в радиотехнике, часто можно пренебречь сопротивлением r0 и утечкой g0 по сравнению с ω·L0 и ω·C0. Если принять r0=0 и   g0=0, то такую линию называют линией без потерь.

Для линии без потерь:

 - волновое сопротивление действительная величина, от частоты не зависит.

 - отсутствует ослабление волн.

                                              (6.34)

Так как аргумент волнового сопротивления равен нулю, то напряжение падающей и отражённой волн совпадают по фазе с токами.

При этом уравнения длинной линии в гиперболических функциях преобразуются в уравнение в тригонометрических функциях:

Комплексный коэффициент отражения по напряжению

Характеризует степень согласования линии передачи с нагрузкой. Модуль коэффициента отражения изменяется в пределах: 

  • Г | = 0, если отражения от нагрузки отсутствуют и BU = 0[8];

  • Г | = 1, если волна полностью отражается от нагрузки, то есть | AU | = | BU | ;

Соотношение (16) представляет собой сумму падающей и отраженной волн.

Отобразим напряжение на комплексной плоскости в виде векторной диаграммы, каждый из векторов которой определяет падающую, отраженную волны и результирующее напряжение (рис. 4). Из диаграммы видно, что существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в фазе. Напряжение в этих сечениях достигает максимума, величина которого равна сумме амплитуд падающей и отраженной волн:

.

Кроме того, существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в противофазе. При этом напряжение достигает минимума:

.

Если линия нагружена на сопротивление, для которого |Г| = 1 , т.е. амплитуда падающей и отраженной волн равны |BU| = |AU|, то в этом случае Umax = 2|AU|, а Umin = 0.

Рис.5. Эпюры распределения напряжения вдоль линии с отражённой волной. а) Модуль напряжения; б) фаза напряжения.

Напряжение в такой линии изменяется от нуля до удвоенной амплитуды падающей волны. На рис. 5 представлены эпюры изменения амплитуды и фазы напряжения вдоль линии при наличии отраженной волны.

[править]Коэффициенты бегущей и стоячей волны

По эпюре напряжения судят о степени согласования линии с нагрузкой. Для этого вводятся понятия коэффициента бегущей волны - kБВ и коэффициента стоячей волны kСВ:

(17)

(18)

Эти коэффициенты, судя по определению, изменяются в пределах:

,

.

На практике наиболее часто используется понятие коэффициента стоячей волны, так как современные измерительные приборы (панорамные измерители kСВ) на индикаторных устройствах отображают изменение именно этой величины в определенной полосе частот

12. Транзисторы. Эмиттерный повторитель.

Используемая на практике схема усилителя на эмиттерном повторителе. Резисторы R1 и R2задают начальный режим работы транзистора («смещение»), C1 и C2устраняют постоянную составляющую входного и выходного сигналов

Эмиттерный повторитель — частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель,а также в качестве выходных каскадов усилителей мощности. . Фаза сигнала не инвертируется.

Iвых = Iэ

Iвх = Iб

Uвх = Uбк

Uвых = Uкэ

  • Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]

  • Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб

Достоинства:

  • Большое входное сопротивление

  • Малое выходное сопротивление

Недостатки:

  • Коэффициент усиления по напряжению меньше 1.

13. Триггер. Формирователь длинного импульса на RS-триггере.

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Отличительной особенностью триггера как функционального устройства является свойство запоминания двоичной информации. Под памятью триггера подразумевают способность оставаться в одном из двух состояний и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного в двоичном коде.

При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле,электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различныепрограммируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем:регистровсчётчиковпроцессоровОЗУ.

Триггеры подразделяются на две большие группы — динамические и статические. Названы они так по способу представления выходной информации.

Динамический триггер представляет собой систему, одно из состояний которой (единичное) характеризуется наличием на выходе непрерывной последовательности импульсов определённой частоты, а другое — отсутствием выходных импульсов (нулевое). Смена состояний производится внешними импульсами (рис. 3). Динамические триггеры в настоящее время используются редко.

К статическим триггерам относят устройства, каждое состояние которых характеризуется неизменными уровнями выходного напряжения (выходными потенциалами): высоким — близким к напряжению питания и низким — около нуля. Статические триггеры по способу представления выходной информации часто называют потенциальными.

Каждая из систем классификации характеризует триггеры по разным показателям и поэтому дополняет одна другую. К примеру, триггеры RS-типа могут быть в синхронном и асинхронном исполнении.

Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала(ов), с некоторой задержкой равной сумме задержек на элементах составляющих данный триггер.

Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают термином «такт». Такие информационные сигналы называют синхронными. Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации С.

Одноступенчатые триггеры состоят из одной ступени представляющей собой элемент памяти и схему управления, делятся на триггеры со статическим управлением и триггеры с динамическим управлением.

Триггеры со статическим управлением воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).

Триггеры с динамическим управлением воспринимают информационные сигналы при изменении (перепаде) сигнала на входе С от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход). Также встречается название «триггер управляемый фронтом».

Двухступенчатые триггеры бывают, как правило, со статическим управлением. При одном уровне сигнала на входе С информация, в соответствии с логикой работы триггера, записывается в первую ступень (вторая ступень заблокирована для записи). При другом уровне этого сигнала происходит копирование состояния первой ступени во вторую (первая ступень заблокирована для записи), выходной сигнал появляется в этот момент времени с задержкой равной задержке срабатывания ступени. Обычно двухступенчатые триггеры применяются в схемах, где логические функции входов триггера зависят от его выходов, во избежание временны́х гонок. Двухступенчатые триггеры с динамическим управлением встречаются крайне редко. Двухступенчатый триггер обозначают ТТ.

Триггеры со сложной логикой бывают также одно- и двухступенчатые. В этих триггерах наряду с синхронными сигналами присутствуют и асинхронные. Такой триггер изображён на рис. 1, верхний (S) и нижний (R) входные сигналы являются асинхронными

Триггер — это запоминающий элемент с двумя (или более) устойчивыми состояниями, изменение которых происходит под действием входных сигналов и предназначен для хранения одного бита информации, то есть лог. 0 или лог. 1.

Все разновидности триггеров представляют собой элементарный автомат, включающий собственно элемент памяти (ЭП) и комбинационную схему (КС), которая может называться схемой управления или входной логикой (рис. 7).

В графе триггера каждая вершина графа соединена со всеми другими вершинами, при этом переходы от вершины к вершине возможны в обе стороны (двухсторонние). Граф двоичного триггера — две точки соединённые отрезком прямой линии, троичного триггера — треугольник, четверичного триггера — квадрат с диагоналями, пятеричного триггера — пятиугольник с пентаграммой и т. д. При N=1 граф триггера вырождается в одну точку, в математике ему соответствует унарная единица или унарный ноль, а в электронике — монтажная «1» или монтажный «0», то есть простейшее ПЗУУстойчивые состояния имеют на графе триггера дополнительную петлю, которая обозначает, что при снятии управляющих сигналов триггер остаётся в установленном состоянии.

Состояние триггера определяется сигналами на прямом и инверсном выходах. При положительном кодировании (позитивная логика) высокий уровень напряжения на прямом выходе отображает значение лог. 1 (состояние = 1), а низкий уровень — значение лог. 0 (состояние = 0). При отрицательном кодировании (негативная логика) высокому уровню (напряжению) соответствует логическое значение "0", а низкому уровню (напряжению) соответствует логическое значение "1".

Изменение состояния триггера (его переключение или запись) обеспечивается внешними сигналами и сигналами обратной связи, поступающими с выходов триггера на входы схемы управления (комбинационной схемы или входной логики). Обычно внешние сигналы, как и входы триггера, обозначают латинскими буквами R, S, T, C, D, V и др. В простейших схемах триггеров отдельная схема управления (КС) может отсутствовать. Поскольку функциональные свойства триггеров определяются их входной логикой, то названия основных входов переносятся на всю схему триггера.

Входы триггеров разделяются на информационные (R, S, T и др.) и управляющие (С, V). Информационные входы предназначены для приема сигналов запоминаемой информации. Названия входных сигналов отождествляют с названиями входов триггера. Управляющие входы служат для управления записью информации. В триггерах может быть два вида управляющих сигналов:

  • синхронизирующий (тактовый) сигнал С, поступающий на С-вход (тактовый вход);

  • разрешающий сигнал V, поступающий на V-вход.

На V-входы триггера поступают сигналы, которые разрешают (V=1) или запрещают (V=0) запись информации. В синхронных триггерах с V-входом запись информации возможна при совпадении сигналов на информационном С и V-входах.

Работа триггеров описывается с помощью таблицы переключений, являющейся аналогом таблицы истинности для комбинационной логики. Выходное состояние триггера обычно обозначают буквой Q. Индекс возле буквы означает состояние до подачи сигнала (t) либо (t-1) или после подачи сигнала (t+1) или (t). В триггерах с парафазным (двухфазным) выходом имеется второй (инверсный) выход, который обозначают как Q, /Q или Q'.

Кроме табличного определения работы триггера существует формульное задание функции триггера в секвенциальной логике. Например, функцию RS-триггера в секвенциальной логике представляет формула  . Аналитическая запись SR-триггера выглядит так: 

Типы триггеров

RS-триггеры

Асинхронный RS-триггер с инверсными входами

RS-триггер[10][11], или SR-триггер — триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы.

При подаче единицы на вход S (от англ. Set — установить) выходное состояние становится равным логической единице. А при подаче единицы на вход R (от англ. Reset — сбросить) выходное состояние становится равным логическому нулю. Состояние, при котором на оба входа R и S одновременно поданы логические единицы, в простейших реализациях является запрещённым (так как вводит схему в режим генерации), в более сложных реализациях RS-триггер переходит в третье состояние QQ=00. Одновременное снятие двух «1» практически невозможно. При снятии одной из «1» RS-триггер переходит в состояние, определяемое оставшейся «1». Таким образом RS-триггер имеет три состояния, из которых два устойчивых (при снятии сигналов управления RS-триггер остаётся в установленном состоянии) и одно неустойчивое (при снятии сигналов управления RS-триггер не остаётся в установленном состоянии, а переходит в одно из двух устойчивых состояний).

RS-триггер используется для создания сигнала с положительным и отрицательным фронтами, отдельно управляемыми посредством стробов, разнесённых во времени. Также RS-триггеры часто используются для исключения так называемого явления дребезга контактов.

RS-триггеры иногда называют RS-фиксаторами[12].

Условное графическое обозначение асинхронного RS-триггера

 

Логическая схема асинхронного RS-триггера на элементах 2И–НЕ

Схема устранения дребезга контактов

RS-триггер синхронный

Схема синхронного RS-триггера совпадает со схемой одноступенчатого парафазного (двухфазного) D-триггера, но не наоборот, так как в парафазном (двухфазном) D-триггере не используются комбинации S=0, R=0 и S=1, R=1.

Алгоритм функционирования синхронного RS-триггера можно представить формулой

где x — неопределённое состояние.

Условное графическое обозначение синхронного RS-триггера

 

[править]RS-триггер двухступенчатый со сложной логикой

Рис. Схема RS-триггера двухступенчатого со сложной логикой на элементах 2И-НЕ и 3И-НЕ

УГО этого триггера смотри на рис.1.

D-триггер (D от англ. delay — задержка)[13][14][15] — запоминает состояние входа и выдаёт его на выход. D-триггеры имеют, как минимум, два входа: информационный D и синхронизации С. После прихода активного фронта импульса синхронизации на вход С D-триггер открывается. Сохранение информации в D-триггерах происходит после спада импульса синхронизации С. Так как информация на выходе остаётся неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защёлкой. Рассуждая чисто теоретически, парафазный (двухфазный) D-триггер можно образовать из любых RS- или JK-триггеров, если на их входы одновременно подавать взаимно инверсные сигналы.

D-триггер в основном используется для реализации защёлки. Так, например, для снятия 32 бит информации с параллельной шины, берут 32 D-триггера и объединяют их входы синхронизации для управления записью информации в защёлку, а 32 D входа подсоединяют к шине.

В одноступенчатых D-триггерах во время прозрачности все изменения информации на входе D передаются на выход Q. Там, где это нежелательно, нужно применять двухступенчатые (двухтактные, Master-Slave, MS) D-триггеры.

Условное графическое обозначение D-триггера со статическим входом синхронизации С

[править]D-триггер двухступенчатый

[править]T-триггеры

Т-триггер часто называют счётным триггером, так как он является простейшим счётчиком до 2.

[править]Т-триггер асинхронный

Асинхронный Т-триггер не имеет входа синхронизации С.

T-триггер синхронный

Условное графическое обозначение (УГО) синхронного T-триггера с динамическим входом синхронизации С на схемах.

Синхронный Т-триггер[16][17], при единице на входе Т, по каждому такту на входе С изменяет своё логическое состояние на противоположное, и не изменяет выходное состояние при нуле на входе T. Т-триггер может строиться на JK-триггере, на двухступенчатом (Master-Slave, MS) D-триггере и на двух одноступенчатых D-триггерах и инверторе. Как можно видеть в таблице истинности JK-триггера, он переходит в инверсное состояние каждый раз при одновременной подаче на входы J и Kлогической 1. Это свойство позволяет создать на базе JK-триггера Т-триггер, объединяя входы J и К. Наличие в двухступенчатом (Master-Slave, MS) D-триггере динамического входа С позволяет получить на его основе T-триггер. При этом инверсный выход Q соединяется со входом D, а на вход С подаются счётные импульсы. В результате триггер при каждом счётном импульсе запоминает значение  , то есть будет переключаться в противоположное состояние.

Т-триггер часто применяют для понижения частоты в 2 раза, при этом на Т вход подают единицу, а на С — сигнал с частотой, которая будет поделена на 2.

[править]T-триггер двухступенчатый со сложной логикой

[править]TV-триггер двухступенчатый со сложной логикой

[править]JK-триггеры

[править]JK-триггер

JK-триггер с дополнительными асинхронными инверсными входами S и R

JK-триггер[18][19] работает так же как RS-триггер, с одним лишь исключением: при подаче логической единицы на оба входа J и K состояние выхода триггера изменяется на противоположное. Вход J (от англ. Jump — прыжок) аналогичен входу S у RS-триггера. Вход K (от англ. Kill — убить) аналогичен входу R у RS-триггера. При подаче единицы на вход J и нуля на вход K выходное состояние триггера становится равным логической единице. А при подаче единицы на вход K и нуля на вход J выходное состояние триггера становится равным логическому нулю. JK-триггер в отличие от RS-триггера не имеет запрещённых состояний на основных входах, однако это никак не помогает при нарушении правил разработки логических схем. На практике применяются только синхронные JK-триггеры, то есть состояния основных входов J и K учитываются только в момент тактирования, например по положительному фронту импульса на входе синхронизации.

На базе JK-триггера возможно построить D-триггер или Т-триггер. Как можно видеть в таблице истинности JK-триггера, он переходит в инверсное состояние каждый раз при одновременной подаче на входы J и K логической 1. Это свойство позволяет создать на базе JK-триггера Т-триггер, объединив входы J и К[20].

Алгоритм функционирования JK-триггера можно представить формулой

Условное графическое обозначение JK-триггера со статическим входом С

 

В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности. Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этом подразумевается, что формируемый импульс превышает длительность запускающего.

14. Линии с потерями, телеграфное уравнение

Телеграфные уравнения - пара линейных дифференциальных уравнений, описывающих распределение напряжения и тока в линии электропередачи по времени и расстоянию. Уравнения были составлены Оливером Хевисайдом, в 1880-х разработавшим модель линии электропередачи, описанную в этой статье. Теория Хевисайда применима к линиям электропередачи всех частот, включая высокочастотные линии (такие, как телеграфные и радиочастотные проводники), линии со звуковыми частотами (например, телефонные линии), низкочастотные линии (например, силовые линии) и постоянный ток. Телеграфные уравнения, как и все другие уравнения, описывающие электрические явления, могут быть сведены к частному случаюуравнений Максвелла. С точки зрения практики, предполагается, что проводники состоят из бесконечной цепи двухполюсников, каждый из которых представляет собой бесконечно короткий участок линии:

  • Удельное сопротивление проводников R представлено в виде резистора (выражается в Омах на единицу длины).

  • Удельная индуктивность L (возникает из-за магнитного поля вокруг проводников, самоиндуктивности и т.д.) представлена в видекатушки (генри на единицу длины).

  • Емкость C между двумя проводниками представлена в виде конденсатора (фарад на единицу длины).

  • Проводимость диэлектрического материала, разделяющего два проводника (изоляции) G представлена в виде резистора между проводом под напряжением и нулевым проводом (сименс на единицу длины). В модели этот резистор имеет сопротивление 1 / GОм.

Для ясности повторим, что модель основана на бесконечной цепи элементов, показанных на картинке, и номиналы ее частей указанына единицу длины. Также можно использовать R', L', C' и G', чтобы подчеркнуть, что значения являются производными по координате.

Телеграфные уравнения выведены в той же форме в следующих источниках:

Линия с потерями

Когда элементами R и G нельзя пренебречь, первоначальные дифференциальные уравнения, описывающие элементарный участок, принимают вид

Дифференцируя первое уравнение по x и второе по t, после проведения некоторых алгебраических преобразований, мы получим пару гиперболических дифференциальных уравнений в частных производных, каждое из которых содержит по одной неизвестной:

Заметим, что эти уравнения похожи на уравнение однородной волны с дополнительными условиями над V и I и их первыми производными. Дополнительные условия вызывают затухание и рассеяние сигнала в течении времени и с увеличением расстояния. Если потери линии малы (малые R и G = 0), сигнал будет затухать с увеличением расстояния как ex, где α = R/2Z0

15. Операционные усилители. Интегратор и дифференциатор

Обозначение операционного усилителя на схемах

Операционный усилитель (ОУOpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Питание

В общем случае ОУ использует двуполярное питание, то есть источник питания имеет три вывода с потенциалами:

  • U+ (к нему подключается VS+)

  • 0

  • U- (к нему подключается VS-)

Вывод источника питания с нулевым потенциалом непосредственно к ОУ обычно не подключается, но, как правило, является сигнальной землёй и используется для создания обратной связи. Часто вместо двуполярного используется более простое однополярное, а общая точка создаётся искусственно или совмещается с отрицательной шиной питания.

ОУ способны работать в широком диапазоне напряжений источников питания, типичное значение для ОУ общего применения от ±1,5 В до ±15 В при двуполярном питании (то есть U+ = 1,5…15 В, U- = -15…-1,5 В, допускается значительный перекос).

[править]Простейшее включение ОУ

Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:

(1)

здесь

  • Vout: напряжение на выходе

  • V+: напряжение на неинвертирующем входе

  • V: напряжение на инвертирующем входе

  • Gopenloop: коэффициент усиления с разомкнутой петлёй обратной связи

Все напряжения считаются относительно общей точки схемы. Рассматриваемый способ включения ОУ (без обратной связи) практически не используется[1] вследствие присущих ему серьёзных недостатков:

  • Коэффициент усиления с разомкнутой петлёй обратной связи Gopenloop нормируется в очень широких пределах и может изменяться в тысячи раз (зависит сильнее всего от частоты сигнала и температуры).

  • Коэффициент усиления очень велик (типичное значение 106 на постоянном токе) и не поддаётся регулировке.

  • Точка отсчёта входного и выходного напряжений не поддаются регулировке.

Для того, чтобы рассматривать функционирование ОУ в режиме с обратной связью, необходимо вначале ввести понятие идеального операционного усилителя. Идеальный ОУ является физической абстракцией, то есть не может реально существовать, однако позволяет существенно упростить рассмотрение работы схем на ОУ благодаря использованию простых математических моделей.

Идеальный ОУ описывается формулой (1) и обладает следующими характеристиками:

  1. Бесконечно большой коэффициент усиления с разомкнутой петлей обратной связи Gopenloop.[2]

  2. Бесконечно большое входное сопротивление входов V- и V+. Другими словами, ток, протекающий через эти входы, равен нулю.

  3. Нулевое выходное сопротивление выхода ОУ.

  4. Способность выставить на выходе любое значение напряжения.

  5. Бесконечно большая скорость нарастания напряжения на выходе ОУ.

  6. Полоса пропускания: от постоянного тока до бесконечности.

Пункты 5 и 6 в действительности следуют из формулы (1), поскольку в неё не входят временны́е задержки и фазовые сдвиги. Из перечисленных условий следует важнейшее свойство идеального ОУ, упрощающее рассмотрение схем с его использованием:

Идеальный ОУ, охваченный отрицательной обратной связью, поддерживает одинаковое напряжение на своих входах [3][4]

Другими словами, при указанных условиях всегда выполняется равенство:

(2)

Не следует думать, что ОУ выравнивает напряжения на своих входах, подавая напряжение на входы «изнутри». На самом деле ОУ выставляет на выходе такое напряжение, которое через обратную связь подействует на входы таким образом, что разность входных напряжений уменьшится до нуля.

Легко убедиться в справедливости равенства (2). Допустим, (2) нарушено — имеет место небольшая разность напряжений. Тогда входное дифференциальное напряжение, усиленное в ОУ, вызвало бы (вследствие бесконечного коэффициента усиления) бесконечно большое выходное напряжение, которое, в соответствии с определением ООС, ещё уменьшило бы разность входных напряжений. И так до тех пор, пока равенство (2) не будет выполнено. Заметим, что выходное напряжение может быть любым — оно определяется видом обратной связи и входным напряжением.

интегратор Интегрирует (инвертированный) входной сигнал по времени.

где Vin и Vout — функции времени, Vinitial — выходное напряжение интегратора в момент времени t = 0.

  • Данный четырехполюсник можно также рассматривать как фильтр нижних частот.

Дифференциатор Дифференцирует (инвертированный) входной сигнал по времени.

где Vin и Vout — функции времени.

  • Данный четырехполюсник можно также рассматривать как фильтр высоких частот.

16. Нелинейные цепи. Транзисторные и варакторные умножители частоты. НЕЛИНЕЙНЫЕ ЦЕПИ

 

Линейные сопротивления, индуктивности и емкости соответственно описываются линейными зависимостями: . Примерами нелинейных элементов (Н.Э.) могут служить полупроводниковые диоды, катушки с магнитным сердечником (дросселем), конденсаторы с сегнетокерамикой (вариконды), зависимости которых нелинейны.

Электрическая цепь считается нелинейной, если содержит хотя бы один Н.Э. Процессы в нелинейных цепях описываются по законам Кирхгофа с помощью нелинейных алгебраических и дифференциальных уравнений. Метод наложения к таким цепям неприемлем. Нелинейные цепи имеют огромное значение. Именно в них происходит преобразование, обработка, генерация, усиление сигналов. Примерами управляемых Н.Э. могут служить транзисторы, электронные лампы, тиристоры.  В нелинейных цепях переменного тока возникает ряд явлений, которых не было в линейных цепях. Отличия обусловлены характером Н.Э. ВАХ элемента, снятая на постоянном токе, называется статической. Точка на ВАХ, обусловленная значениями постоянного тока   или постоянного напряжения   называется рабочей. Переменная составляющая сигнала изменяется относительно положения рабочей точки. Сопротивление Н.Э. на постоянном токе называется статическим  . Сопротивление для переменной составляющей сигнала называется динамическим  . В зависимости от быстродействия Н.Э. его динамическое сопротивление определяется по разному. Если состояние Н.Э. за период переменного сигнала   не успевает измениться и определяется состоянием, соответствующим положению рабочей точки,  , а элемент называется инерционным. Если состояние Н.Э. успевает изменяться за период сигнала   , то  , а элемент называется безинерционным.  - дифференциальное сопротивление, равное производной ВАХ в рабочей точке.  

Как видно из графических построений форма сигнала инерционным элементом не изменяется. В безинерционном элементе, например, при синусоидальном напряжении ток будет не синусоидальным, который можно разложить в ряд Фурье, тем самым появляется возможность изменять частотный состав сигнала. Монотонная ВАХ не меняет знака производной по  или   Примерами не монотонных ВАХ могут служить характеристики туннельного диода и динистора. Они содержат участки ВАХ с отрицательным дифференциальным сопротивлением, которые могут быть использованы для усиления или генерации сигналов. Н. Э. могут быть управляемыми, например биполярные транзисторы, которые имеют семейство характеристик.  

Анализ цепей с безинерционными элементами. Цепи, не содержащие энергозависимых элементов  называются резистивными и имеют математическую модель, описываемую системой нелинейных уравнений. Применяются графический, графоаналитический и численный методы анализа. Для двухполюсников используется входная характеристика, для четырехполюсника – передаточная. Важное свойство безинерционных резистивных цепей – преобразование спектра (было показано ранее графическим методом). В радиоэлектронике такие четырехполюсники применяются для умножения частоты, модуляции, детектирования и т.п. Положения рабочих точек задаются источниками постоянного тока, поэтому первым этапом расчета электронных цепей является анализ на постоянном токе. Замену нескольких Н.Э. одним эквивалентным можно показать на примере графической обработки их ВАХ.

После построения ВАХ эквивалентного Н.Э. по заданному   (или  ) определяется другой параметр   (или  ).

Другой способ определения параметров в рабочей точке заключается в построении ВАХ ветвей относительно двух выделенных узлов.   ВАХ левой ветви совпадает с ВАХ Н.Э. Для правого контура имеем:  , откуда  . По этому выражению строится ВАХ правой ветви. По первому закону Кирхгофа  . Это условие ВАХ выполняется в точке пересечения и определяет координаты рабочей точки. Численный анализ наиболее часто проводится методом Ньютона и его модификаций. Вначале составляется система уравнений по законам Кирхгофа. Нелинейность закладывается в нелинейной зависимости ВАХ Н.Э. при ее аналитической аппроксимации. Затем решением уравнений анализируемая цепь сводится к описанию нелинейным уравнением (пусть от одной переменной  ):  . Итерационная формула для поиска решения выводится из условия:   , откуда  .  

На первом рисунке процесс сходится. Для этого необходимо, чтобы: а) начальное приближение было выбрано достаточно близким к  ; б)   не была слишком близка к нулю; в)   не была слишком большая. На втором рисунке приведен пример зацикливания процесса.

Умножители частоты предназначены для увеличения частоты колебаний в целое число раз. Необходимость в умножителях возникает в том случае, когда невозможно создать стабильный кварцевый автогенератор с высокой рабочей частотой. Операцию умножения частоты можно записать в виде   , где N = 234 ... – коэффициент умножения. Для этой цели используют нелинейные или параметрические элементы, в спектре тока которых при косинусоидальном напряжении на входе содержится бесконечное число гармоник с кратными частотами Nω0.

Для выделения нужной гармоники используется колебательный контур, настроенный на частоту гармоники или фильтр. Умножитель частоты, таким образом, состоит из нелинейного параметрического элемента и колебательного контура (рис. 3.4).

Умножители на параметрических элементах относят к классу варакторных. Умножители частоты с нелинейными элементами называются гармоническими и обычно строятся на базе генераторов с внешним возбуждением, работающих в режиме второго рода, в спектре которых содержится бесконечное число гармоник, а их колебательный контур настраивается не на первую, а на одну из высших гармоник тока   . Временная диаграмма, поясняющая работу утроителя частоты (N = 3), приведена на (рис. 3.5).

Рис. 3.5

Амплитуда N-ой гармоники тока   при кусочно-линейной аппроксимации характеристики  связана с амплитудой импульсов   соотношением   , где   – функция угла отсечки для   (рис. 3.6). Для каждого N имеется оптимальный угол отсечки   , при выборе которого функция   , а, следовательно,   и   максимальны.

Величина   определяется по формуле   . Тогда для удвоителя   , утроителя   частоты   равны соответственно   и   . Сам угол   обеспечивается подбором  и   . Известно, что с увеличением N амплитуда высших гармоник быстро уменьшается, поэтому на практике, как правило, используют умножители на два и три.

 

Рис. 3.6 Рис. 3.7

Для увеличения частоты в   используют последовательное включение удвоителей и утроителей. В качестве примера на (рис. 3.7) приведена схема умножителя, построенная на микросхеме дифференциального усилителя, в котором нелинейный режим работы устанавливается подбором напряжения смещения на базе   , а выделение требуемой гармоники тока в коллекторную цепь транзистора   включен двухконтурный фильтр.

Транзисторные умножители частоты

В транзисторном усилителе мощности (УМ) коллекторный контур настроен на частоту входного сигнала. Если транзистор работает с отсечкой тока, а коллекторный контур настроен на п-ю гармонику входного сигнала, то такое устройство выполняет функцию умножителя частоты в п раз. Выражение для КПД умножителя аналогично (3.33), где вместо gx нужно подставить ёп = /к п//к о — отношение амплитуды п-й гармоники коллекторного тока к его постоянной составляющей. Коэффициенты уп, gn для импульсов, имеющих форму усеченнных косинусов [64], сильно уменьшаются с ростом номера гармоники. Для четных п максимум уп имеет место при 6 = 90°: для п=2 72тах = 0,212, g2 = 0,66; для п = 4 74 max = 0,042, ^4 = 0,13. Для п = 3, п = 5 коэффициенты уп максимальны при 0 = 60° и 72° соответственно, при этом у3 тах = = 0,069, £з = 0,63; 75тах = 0,025, g5 = 0,14.

17. Операционные усилители. Сумматор напряжений.

 сумматор напряжения

Это устройство у которого выходное напряжение равно алгебраической сумме входных напряжений, взятой с противоположным знаком (рис.1.5). Установим связь между выходным и входными сигналами такой схемы. Если считать, что ОУ идеальный т.е. Iоу= 0 и Uвх- = Uвх+ = 0, то при подаче на его входы напряжения U1 , U2 ,..., Un , можно записать, что Iвх = Iос , где Iвх = I1 + I2 +...+ In , а I1 = U1/ R1 , I2 = U2/ R2 ,..., In = Un/ Rn . Поскольку Uвых = -Iос Rос  , то выражение связывающее входное и выходное напряжения примет вид

Uвых=Rос/R0(U1+U2+ ...+ Un),

(5)

где R0 = R1 = R2 = ... = Rn , а знак минус означает инвертирование.

18. Многие электрические цепи, осуществляющие передачу сигналов от одного объекта к другому, имеют две пары зажимов, с помощью которых они соединяются с внешними объектами. Такие электрические цепи называют четырехполюсниками. К ним относятся усилители, трансформаторы, передающие линии, электрические фильтры и др.

Теория четырехполюсников устанавливает общие связи между их входными и выходными токами и напряжениями (рис. 12.1, а). При работе четырехполюсника предполагается равенство токов обоих входных зажимов 1, 1' и пары выходных зажимов 2, 2'.

При питании четырехполюсника, составленного из линейных элементов, со стороны входных зажимов от источника синусоидального тока при разомкнутых выходных зажимах (рис. 12.1, б) напряжения на входе и выходе синусоидальны и пропорциональны току İ1: где Z11, Z21 — входное и передаточное сопротивления четырехполюсника в рассматриваемом режиме.

Аналогичные соотношения будем иметь при питании четырехполюсника со стороны выходных зажимов и холостом ходе на входе (рис. 12.1, в):

Применяя принцип наложения, получим связи между входными и выходными величинами для общего случая — уравнения четырехполюсника через Z-параметры (см. рис. 12.1, а):

Рассматривая режимы питания от источников ЭДС, создающих напряжения и , при коротком замыкании на противоположной стороне (рис. 12.1, г, д), получим следующие соотношения для значений токов в обоих частных режимах:

Для общего случая запишем уравнения четырехполюсника в Y-форме

В матричной форме полученные соотношения имеют вид: или

Для данного четырехполюсника обе системы уравнений эквивалентны. Так как из первого матричного уравнения следует , то матрицы Z- и Y-параметров четырехполюсника обратны друг другу, т. е. Y = Z-1. Используя правило нахождения элементов обратной матрицы, запишем полученное равенство в развернутой форме где DZ = Z11Z22 – Z12Z21 — определитель матрицы Z. Справедливы и обратные соотношения, выражающие элементы матрицы Z через Y-параметры.

Связи между токами и напряжениями четырехполюсника можно записать и в другой форме. Так, для описания биполярных транзисторов широко используют гибридную систему уравнений, в которой входное напряжение и выходной ток выражаются через две другие величины:

Преобразование системы уравнений (12.2) через Y-параметры к виду

позволяет установить связи между Y- и H-параметрами: где DY = Y11Y22 – Y12Y21.

При рассмотрении четырехполюсника как звена цепи передачи сигналов используют еще одну форму уравнений через A-параметры:

или в матричной форме:

A-параметры можно выразить, например, через Z-параметры данного четырехполюсника. Для этого найдем значение İ1 из второго Z-уравнения (12.1): . Подставляя его в первое Z-уравнение системы (12.1), получим . Отсюда находим: A11 = Z11/Z21; A12 = DZ/Z21; A21 = 1/Z21; A22 = Z22/Z21.

Соотношения, выражающие любую систему параметров четырехполюсника через другие системы, приведены в Приложении 1.

Параметры Z, Y, H и A характеризуют связи между входными и выходными токами и напряжениям четырехполюсника. Они определяются его схемой и не зависят от внешних цепей, к которым подключен четырехполюсник. Для нахождения того или иного параметра надо рассмотреть частный режим работы, в котором проявляется один данный параметр. Параметры четырехполюсника являются комплексными величинами. Их модули выражают отношения действующих значений токов и напряжений в соответствующем частном режиме, а аргументы — фазовые сдвиги между этими величинами.

Параметры Z, Y и H с индексами 11 называются входными сопротивлениями или проводимостями, с индексами 22 — выходными величинами. Они определяются в режиме холостого хода или короткого замыкания на противоположной стороне четырехполюсника в зависимости от того, какая пара переменных выступает в правой части данной системы. Так, H11 — входное сопротивление в режиме короткого замыкания, а Z11 — входное сопротивление при холостом ходе на выходе. Выходная проводимость H22 определяется при холостом ходе, а Y22 — при коротком замыкании на входе. Параметры с индексами 21 называются передаточными от входа к выходу. Безразмерный параметр Н21 определяет усиление тока четырехполюсником в режиме короткого замыкания на выходе. Параметры с индексами 12 характеризуют передачу сигналов с выхода на вход. A-параметры с одинаковыми индексами 11 и 22 безразмерные. Они определяются отношением напряжений на входе и выходе в режиме холостого хода и токов в режиме короткого замыкания. Параметр A12 имеет размерность сопротивления, A21 — проводимости.

19. Операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Инвертирующий (вычитающий) усилитель.

Принципиальная схема, показанная на рис.4, является наиболее распространенной схемой включения ОУ. Резистор R2 в цепи обратной связи служит для передачи части выходного сигнала обратно на вход. При подаче входного напряжения (U1) через резистор R1 протекает входной ток i1. Напомним, что входное напряжение ОУ имеет дифференциальный характер, т.е. фактически это разность напряжений на неинвертирующем и инвертирующем входах усилителя. Неинвертирующий вход чаще всего заземляют.

Чтобы получить передаточную характеристику, применим правила Кирхгофа.

Входная цепь: i1 =U1/R1, выходная цепь: i2 = - U2 / R2

Т.к. ОУ - идеальный (Rвх - очень большое): i1 = - i2, отсюда U1/R1=U2/R2.

Коэффициент ус иления k ус = - U2/U1= - R2/R1. Тогда выходное напряжение будет равно U2 = - (R2 / R1) U1.

Рис. 4. Инвертирующий усилитель на ОУ.

Отношение номинальных значений резисторов R2/ R1 называется коэффициентом передачи усилителя, охваченного обратной связью, а знак минус означает, что выходной сигнал инвертирован. Следует обратить внимание, что коэффициент усилителя, охваченного обратной связью, можно установить посредством выбора сопротивлений двух резисторов, R1 и R2. При подаче переменного напряжения на выходе будет наблюдаться инвертированный сигнал, т.е. при росте входного сигнала на выходе будет спад.

Неинвертирующий и суммирующий усилитель.

Если в усилителе, охваченном отрицательной обратной связью через резисторы R1 и R2, напряжение подавать на неинвертирующий вход, как показано на рисунке слева, то мы получим неинвертирующий усилитель с коэффициентом усиления k ус = 1 + R2/R1. Схема, показанная на рисунке справа, работает как суммирующий усилитель.

Рис. 5. Неинвертирующий усилитель на ОУ. Сумматор.

Учитывая знаки напряжений, получим такую функцию преобразования

U2 = (R2 / R1)U4 - (R2 / R1)U3 - (R2 / R3)U2 - (R2 / R4)U1

В заключение заметим, что суммирующий усилитель можно использовать как цифро-аналоговый преобразователь (ЦАП), если номиналы резисторов R1, R3, R4 будут последовательно расти по степеням числа "2" , как RN =2 N-1.

20. Амплиту́дная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда

Определение

Пусть

S(t) — информационный сигнал, | S(t) | < 1,

Uc(t) — несущее колебание.

Тогда амплитудно-модулированный сигнал Uam(t) может быть записан следующим образом:

Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал Uc(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия:

Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Балансная модуляция

Анализ спектрального состава AM сигнала показал, что первичный модулирующий сигнал находит свое отображение лишь в составляющих боковых полос спектра АМ сигнала. В процессе отображения первичного сигнала в модулированном колебании составляющая спектра частоты омега0 выполняет лишь роль своеобразного начала отсчета для частот боковых спектральных составляющих. Поэтому ее можно исключить из спектра передаваемого сигнала и восстановить па приемном конце.

Если модулированное колебание не содержит составляющей несущей частоты омега0, то модуляцию называют балансной (БМ). Такой вид модуляции целесообразен с энергетической точки зрения, поскольку на несущую приходится 2/3 всей мощности модулированного колебания. При прочих равных условиях высвободившаяся мощность позволит реализовать большую дальность связи, либо при прежней дальности улучшить ее качество.

Однополосная модуляция

Балансная модуляция позволяет более рационально распределить энергию сигнала, однако ширина спектра остается такой же, как и для обычной амплитудной модуляции. В то же время симметрия спектра АМ сигнала означает, что верхняя боковая полоса и нижняя боковая полоса каждая в отдельности, полностью отображают модулирующее колебание. При этом вторая боковая полоса не несет никакой дополнительной информации, вдвое расширяя спектр. Вид модуляции, при котором в спектре амплитудно-модулированного колебания сохраняется лишь одна боковая полоса (верхняя или нижняя), называется однополосной модуляцией.

21. Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность "0", "1" и "2" в троичной логике, последовательности "0", "1", "2", "3", "4", "5", "6", "7", "8"и "9" в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже - на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана о экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) с входными сигналами (операндами, данными).

Всего возможно логических функций и соответствующих им логических элементов, где - основание системы счисления, - число входов (аргументов), - число выходов, т.е. бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны двоичных двухвходовых логических элементов и двоичных трёхвходовых логических элементов (Булева функция).

Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элемента и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).

Физические реализации логических элементов

Физические реализации одной и той же логической функции в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Классификация электронных транзисторных физических реализаций логических элементов

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

РТЛ (резисторно-транзисторная логика)

ДТЛ (диодно-транзисторная логика)

ТТЛ (транзисторно-транзисторная логика)

Упрощённая схема двухвходового элемента И-НЕ ТТЛ .

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

ТТЛШ (то же с диодами Шоттки)

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

КМОП (логика на основе комплементарных ключей на МОП транзисторах)

ЭСЛ (эмиттерно-связанная логика)

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160-200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

Инвертор

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

Применение логических элементов

Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

Комбинационные логические устройства

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами.

Шифратор

Дешифратор

Мультиплексор

Демультиплексор

Полусумматор

Сумматор

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

Последовательностные цифровые устройства

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

Триггер

Счётчик импульсов,Регистр, Венъюнктор, Секвентор

Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip — тонкая пластинка — первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки[1].

На сегодняшний день большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС, чипом) — ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату). Корпус микросхемы — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями.

В российских корпусах расстояние между выводами (шаг) измеряется в миллиметрах и наиболее часто это 2,5 мм и 1,25 мм. У импортных микросхем шаг измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах (20 и более выводов) соответствующие корпуса уже достаточно конструктивно несовместимы: для штыревых выводов — обламывание выводов при монтаже, для планарных — спайка соседних.

В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Специфические названия микросхем

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

22. Рассмотрим цепь с ненулевыми начальными условиями. Допустим, что в момент времени t=0 участок R, L, C подключается к источнику ЭДС e(t) (рис. 8.4). Требуется найти изображение тока на этом участке.

По второму закону Кирхгофа для имеем (рис. 8.4б):

Рис. 8.4. Включение источника ЭДС в цепь с ненулевыми начальными условиями ( (а) - цепь до коммутации; б)- цепь после коммутации).

Этому выражению соответствует уравнение для изображений:

здесь, – начальный ток в индуктивности и начальное напряжение на емкости.

Решив полученное уравнение относительно , имеем:

Выражение

называется операторным сопротивлением электрической цепи.

Выражение

называется законом Ома в операторной форме.

Первый закон Кирхгофа в операторной форме:

Второй закон Кирхгофа в операторной форме:

где - операторное сопротивление ветви.

Последовательность расчетов в операторном методе

Расчет состоит из двух этапов:

Составление изображения искомой функции времени.

Переход из изображения к искомой функции времени.

23. Модуляция колебаний

медленное по сравнению с периодом колебаний изменение амплитуды, частоты или фазы колебаний по определённому закону. Соответственно различаются амплитудная модуляция, частотная модуляция и фазовая модуляция (рис. 1). При любом способе М. к. скорость изменения амплитуды, частоты или фазы должна быть достаточно малой, чтобы за период колебания модулируемый параметр почти не изменился.

М. к. применяется для передачи информации с помощью электромагнитных волн радио- или оптических диапазонов. Переносчиком сигнала в этом случае являются синусоидальные электрические колебания высокой частоты ω (несущая частота). Амплитуда, частота, или фаза этих колебаний, а в случае света и поляризация, модулируются передаваемым сигналом (см. Модуляция света).

В простейшем случае модуляции амплитуды А синусоидальным сигналом модулированное колебание, изображенное на рис. 2, может быть записано в виде:

х = А0 (1 + m sin Ω t) sin (ω t + φ). (1)

Здесь A0 и ω — амплитуда и частота исходного колебания, Ω — частота модуляции, а величина m, называется глубиной модуляции, характеризует степень изменения амплитуды:

Частота модуляции Ω характеризует скорость изменения амплитуды колебаний. Эта частота должна быть во много раз меньше, чем несущая частота ω. Модулированное колебание уже не является синусоидальным. Амплитудно-модулированное колебание представляет собой сумму трёх синусоидальных колебаний с частотами ω, ω + Ω и ω — Ω. Колебание частоты ω называется (в радиотехнике) несущим. Его амплитуда равна амплитуде исходного колебания А0. Две остальные частоты называются боковыми частотами, или спутниками. Амплитуда каждого спутника равна mА0/2.

Т. о., любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае М. к. синусоидальным сигналом этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала. Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания (См. Радиовещание) — 10 кгц, для телевидения (См. Телевидение) — 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты ω и модулирующий сигнал частоты Ω подают на специальное устройство — Модулятор.

В случае частотной модуляции синусоидальным сигналом частота колебаний меняется по закону:

ω = ω0 + Δω cos Ω t, (3)

где cos Ω t — модулирующий сигнал, Δω — т. н. девиация частоты. При частотной модуляции полоса частот модулированного колебания зависит от величины β = Δω/Ω, называемой индексом частотной модуляции. При β << 1 справедливо приближённое соотношение:

х ≈ А0 (sin ω t + β sin Ω t cos ω t). (4)

В этом случае частотно-модулированное колебание, так же как и амплитудно-модулированное, состоит из несущей частоты ω и двух спутников с частотами ω + Ω и ω — Ω. Поэтому при малых β полосы частот, занимаемые амплитудно-модулированным и частотно-модулированным сигналами, одинаковы. При больших индексах β спектр боковых частот значительно увеличивается. Кроме колебаний с частотами ω ± Ω, появляются колебания, частоты которых равны ω ± 2 Ω, ω ± 3 Ω и т. д. Полная ширина полосы частот, занимаемая частотно-модулированным колебанием с девиацией Δω и частотой модуляции Ω (с точностью, достаточной для практических целей), может считаться равной 2 Δω + 2 Ω. Эта полоса всегда шире, чем при амплитудной модуляции.

Преимуществом частотной модуляции перед амплитудной в технике связи является большая помехоустойчивость. Это качество частотной модуляции проявляется при β >> 1, т. е. когда полоса частот, занимаемая частотно-модулированным сигналом, во много раз больше 2 Ω. Поэтому частотно-модулированные колебания применяются для высококачественной передачи сигналов в диапазоне ультракоротких волн (УKB), где на каждую радиостанцию выделена полоса частот, в 15—20 раз большая, чем в диапазоне длинных, средних и коротких волн, на которых работают радиостанции с амплитудной модуляцией. Частотная модуляция применяется также для передачи звукового сопровождения телевизионных программ. Частотно-модулированные колебания могут быть получены изменением частоты задающего генератора (См. Задающий генератор) (см. Радиопередатчик).

В случае фазовой модуляции модулированное колебание имеет вид:

х = А0 sin (ω0 t + Δφ cos Ω t). (5)

Если модулирующий сигнал синусоидальный, то форма модулированных колебаний и их спектральный состав для частотной и фазовой модуляции одинаковы. В случае несинусоидального модулирующего сигнала это различие четко выражено.

В многоканальных системах связи в качестве переносчика информации используется не гармоническое колебание, а периодическая последовательность радиоимпульсов, каждый из которых представляет собой цуг колебаний высокой частоты (рис. 3). Периодическая последовательность таких импульсов определяется четырьмя основными параметрами: амплитудой, частотой следования, длительностью (шириной) и фазой. В соответствии с этим возможны четыре типа импульсной модуляции: амплитудно-импульсная, частотно-импульсная, широтно-импульсная, фазово-импульсная (рис. 4). Импульсная модуляция обладает повышенной помехоустойчивостью по сравнению с модуляцией непрерывной синусоидальной несущей, зато полоса частот, занимаемая передающей радиостанцией с импульсной модуляцией, во много раз шире, чем при амплитудной модуляции (см. Импульсная модуляция, Импульсная радиосвязь).

24. Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

Традиционно диод Ганна состоит из слоя арсенида галлия толщиной от единиц до сотен микрометров с омическими контактами с обеих сторон. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.

В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.

При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300мВт.

Наряду с арсенидом галлия для изготовления диодов Ганна также используется фосфид индия (до 170 ГГц) и нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц.

Туннельный диод

Устройство

Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

История изобретения

Туннельный диод был изготовлен в 1958 году Лео Эсаки, который в 1973 году получил Нобелевскую премию по физике за экспериментальное обнаружение эффекта туннелирования электронов в этих диодах.

Применение

Наибольшее распространение на практике получили туннельные диоды из Ge, GaAs, а также из GaSb. Эти диоды находят широкое применение в качестве генераторов и высокочастотных переключателей, они работают на частотах, во много раз превышающих частоты работы тетродов, — до 30...100 ГГц.

25. Транзи́стор (англ. transistor) — электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 25 нм[источник не указан 386 дней]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

История

Копия первого в мире работающего транзистора

Первые патенты на принцип работы полевых транзисторов были зарегистрированы в Германии в 1928 году (в Канаде, 22 октября 1925 года) на имя австро-венгерского физика Юлия Эдгара Лилиенфельда.[источник не указан 359 дней] В 1934 году немецкий физик Оскар Хейл запатентовал полевой транзистор. Полевые транзисторы (в частности, МОП-транзисторы) основаны на простом электростатическом эффекте поля, по физике они существенно проще биполярных транзисторов, и поэтому они придуманы и запатентованы задолго до биполярных транзисторов. Тем не менее, первый МОП-транзистор, составляющий основу современной компьютерной индустрии, был изготовлен позже биполярного транзистора, в 1960 году. Только в 90-х годах XX века МОП-технология стала доминировать над биполярной.

В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор, продемонстрированный 16 декабря. 23 декабря состоялось официальное представление изобретения и именно эта дата считается днём изобретения транзистора. По технологии изготовления он относился к классу точечных транзисторов. В 1956 году они были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Позднее вакуумные лампы были заменены транзисторами в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров.

Bell нуждались в названии устройства. Предлагались названия «полупроводниковый триод» (semiconductor triode), «Solid Triode», «Surface States Triode», «кристаллический триод» (crystal triode) и «Iotatron», но слово «транзистор» (transistor, образовано от слов transfer — передача и resist — сопротивление), предложенное Джоном Пирсом (John R. Pierce), победило во внутреннем голосовании.

Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде (в полевых транзисторах — напряжением между затвором и истоком, в биполярных транзисторах — напряжением между базой и эмиттером).

Классификация транзисторов

По основному полупроводниковому материалу

Помимо основного полупроводникового материала, применяемого обычно в виде монокристалла, транзистор содержит в своей конструкции легирующие добавки к основному материалу, металл выводов, изолирующие элементы, части корпуса (пластиковые или керамические). Иногда употребляются комбинированные наименования, частично описывающие материалы конкретной разновидности (например, «кремний на сапфире» или «Металл-окисел-полупроводник»). Однако основными являются транзисторы:

Германиевые

Кремниевые

Арсенид-галлиевые

Другие материалы транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок.

По структуре

Транзисторы---Биполярные---p-n-p, n-p-n

Полевые---С p-n-переходом---С каналом n-типа, С каналом p-типа

С изолированным затвором---Со встроенным каналом С индуцированным каналом

Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры, поэтому подробная информация об этом отнесена в соответствующие статьи.

Биполярные

n-p-n структуры, «обратной проводимости».

p-n-p структуры, «прямой проводимости»

Полевые

с p-n переходом

с изолированным затвором

Однопереходные

Криогенные транзисторы (на эффекте Джозефсона)

Комбинированные транзисторы

Транзисторы со встроенными резисторами (Resistor-equipped transistors (RETs)) — биполярные транзисторы со встроенными в один корпус резисторами.

Транзистор Дарлингтона — комбинация двух биполярных транзисторов, работающая как биполярный транзистор с высоким коэффициентом усиления по току.

на транзисторах одной полярности

на транзисторах разной полярности

Лямбда-диод — двухполюсник, комбинация из двух полевых транзисторов, имеющая, как и туннельный диод, значительный участок с отрицательным сопротивлением.

Биполярный транзистор с изолированным затвором (IGBT) — силовой электронный прибор, предназначенный в основном, для управления электрическими приводами.

По мощности

По рассеиваемой в виде тепла мощности различают:

маломощные транзисторы до 100 мВт

транзисторы средней мощности от 0,1 до 1 Вт

мощные транзисторы (больше 1 Вт).

По исполнению

дискретные транзисторы

корпусные

Для свободного монтажа

Для установки на радиатор

Для автоматизированных систем пайки

бескорпусные

транзисторы в составе интегральных схем.

По материалу и конструкции корпуса

металло-стеклянный

пластмассовый

керамический

Прочие типы

Одноэлектронные транзисторы содержат квантовую точку (т. н. «остров») между двумя туннельными переходами. Ток туннелирования управляется напряжением на затворе, связанном с ним ёмкостной связью.

Биотранзистор

Выделение по некоторым характеристикам

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус резисторами. RET транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для контроля входного сигнала микросхем или для переключения меньшей нагрузки на светодиоды.

Применение гетероперехода позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как HEMT.

Применение транзисторов

Вне зависимости от типа транзистора, принцип применения его един:

Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель, реле, лампа накаливания, вход другого, более мощного транзистора, электронной лампы и т.п. Именно источник питания даёт нужную мощность для "раскачки" нагрузки.

Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв, между источником питания и нагрузкой. Т.е. транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.

Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора гораздо меньше напряжения и силы тока в выходной цепи. Таким образом, за счёт контролируемого управления источником питания, достигается усиление сигнала.

Если мощности входного сигнала недостаточно для "раскачки" входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типа мультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

Усилительных схемах. Работает, как правило, в усилительном режиме.[2][3] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[4][5] Транзисторы в таких усилителях работают в ключевом режиме.

Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах.

Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

Усилительный каскад с общей базой (ОБ) — одна из трёх типовых схем построения электронных усилителей на основе биполярного транзистора. Характеризуется отсутствием усиления по току (коэффициент передачи близок к единице, но меньше единицы), высоким коэффициентом усиления по напряжению и умеренным (по сравнению со схемой с общим эмиттером) коэффициентом усиления по мощности. Входной сигнал подаётся на эмиттер, а выходной снимается с коллектора. При этом входное сопротивление очень мало, а выходное — велико. Фазы входного и выходного сигнала совпадают.

Особенностью схемы с общей базой является минимальная среди трёх типовых схем усилителей «паразитная» обратная связь с выхода на вход через конструктивные элементы транзистора. Поэтому схема с общей базой наиболее часто используется для построения высокочастотных усилителей, особенно вблизи верхней границы рабочего диапазона частот транзистора. Достоинством схемы является то, что схема имеет стабильные температурные и частотные свойства, то есть параметры схемы(коэффициент усиления напряжения, тока и входное сопротивление) остаются неизменными при изменении температуры окружающей среды. Недостатком схемы является то, что нет усиления тока и малое входное сопротивление.

Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]

Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства:

Хорошие температурные и частотные свойства.

Высокое допустимое напряжение

Недостатки схемы с общей базой :

Малое усиление по току, так как α < 1

Малое входное сопротивление

Два разных источника напряжения для питания.

26. Дифференцирующие и интегрирующие цепи

Рассмотрим RC-цепь, изображенную на рис. 3.20,а. Пусть на входе этой цепи действует напряжение u1(t).

Рис. 3.20. Дифференцирующие RC-(а) и RL-(б) цепи.

Тогда для этой цепи справедливо соотношение

и с учетом преобразований будем иметь (3.114)

Если для данного сигнала выбрать постоянную времени цепи τ=RC настолько большим, что вкладом второго члена правой части (3.114) можно пренебречь, то переменная составляющая напряжения uR≈u1. Это значит, что при больших постоянных времени напряжение на сопротивлении R повторяет входное напряжение. Такую цепь применяют тогда, когда необходимо передать изменения сигнала без передачи постоянной составляющей.

При очень малых значениях τ в (3.114) можно пренебречь первым слагаемым. Тогда (3.115)

т. е. при малых постоянных времени τ RC-цепь (рис. 3.20,а) осуществляет дифференцирование входного сигнала, поэтому такую цепь называют дифференцирующей RC-цепью.

Аналогичными свойствами обладает и RL-цепь (рис. 3.20,б).

Рис. 3.21. Частотные (а) и переходная (б) характеристики дифференцирующих цепей.

Сигналы при прохождении через RС- и RL-цепи называют быстрыми, если ,

или медленными, если .

Отсюда следует, что рассмотренная RC-цепь дифференцирует медленные и пропускает без искажения быстрые сигналы.

Для гармонической э. д. с. аналогичный результат легко получить, вычисляя коэффициент передачи цепи (рис. 3.20,а) как коэффициент передачи делителя напряжения со стационарными сопротивлениямиR и XC=1/ωC:

(3.116)

При малых τ, а именно когда τ<<1/ω, выражение (3.116) преобразуется в .

При этом фаза выходного напряжения (аргумент K) равна π/2. Сдвиг гармонического сигнала по фазе на π/2 эквивалентен его дифференцированию. При τ>>1/ω коэффициент передачи K≈1.

В общем случае модуль коэффициента передачи (3.116), или частотная характеристика цепи (рис. 3.20,а):

(3.118)

а аргумент K, или фазовая характеристика этой цепи: (3.119)

Эти зависимости показаны на рис. 3.21,а.

Такими же характеристиками обладает RL-цепь на рис. 3.20,б с постоянной времени τ=L/R.

Если в качестве выходного сигнала взять единичный скачок напряжения , то интегрированием уравнения (3.114) можно получить переходную характеристику дифференцирующей цепи, или временную зависимость выходного сигнала при единичном скачке напряжения на входе: (3.120)

График переходной характеристики показан на рис. 3.21,б.

Рис. 3.22. Интегрииующие RC-(а) и LC-(б) цепи.

Рассмотрим RC-цепь, изображенную на рис. 3.22,а. Она описывается уравнением

Или (3.121)

При малых τ=RC (для «медленных» сигналов) uC≈u1. Для «быстрых» сигналов напряжение u1 интегрируется: (3.122)

Поэтому RC-цепь, выходное напряжение которого снимается с емкости C называют интегрирующей цепью.

Коэффициент передачи интегрирующей цепи определяется выражением (3.123)

При ω<<1/τ K≈1.

Частотная и фазовая характеристики описываются соответственно выражениями

(3.124)

(3.125)

Рис. 3.23. Частотные (а) и переходная (б) характеристики интегрирующих цепей.

и изображены на рис. 3.23,а. Переходная характеристика (рис. 3.23,б) получается интегрированием (3.121) при : (3.126)

При равных постоянных времени такими же свойствами обладает RL-цепь, изображенная на рис. 3.22,б.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]