Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы электроника.docx
Скачиваний:
8
Добавлен:
20.09.2019
Размер:
1.21 Mб
Скачать

Передача без потерь

Когда элементы R и G малы, их значением можно пренебречь, линия электропередач при этом считается идеальной. В этом случае модель зависит только от элементов L и C, мы получаем пару дифференциальных уравнений в частных производных первого порядка, одна функция описывает распределение напряжения V вдоль линии, а другая - распределение тока I, обе функции зависят от координаты x и времени t.

Эти уравнения можно совместить для получения двух отдельных волновых уравнений:

В стационарном случае (считаем, что волна синусоидальная , уравнения упрощаются до

где ω - частота стационарной волны.

Если линяя является бесконечно длинной, или оканчивается характеристическим комплексным сопротивлением, уравнения показывают присутствие волны, распространяющейся со скоростью .

(Заметим, что такая скорость распространения применима к волновым явлениям и не учитывает дрейфовую скорость электрона. Другими словами, электрический импульс распространяется со скоростью, очень близкой к скорости света, несмотря на то, что сами электроны перемещаются со скоростью всего несколько сантиметров в секунду.) Можно показать, что эта скорость в коаксиальной линии, сделанной из идеальных проводников, разделенных вакуумом, равна скорости света.

Линии без потерь и линии без искажений обсуждаются в [8] и [9]

Линия с потерями

Когда элементами R и G нельзя пренебречь, первоначальные дифференциальные уравнения, описывающие элементарный участок, принимают вид

Дифференцируя первое уравнение по x и второе по t, после проведения некоторых алгебраических преобразований, мы получим пару гиперболических дифференциальных уравнений в частных производных, каждое из которых содержит по одной неизвестной:

Заметим, что эти уравнения похожи на уравнение однородной волны с дополнительными условиями над V и I и их первыми производными. Дополнительные условия вызывают затухание и рассеяние сигнала в течении времени и с увеличением расстояния. Если потери линии малы (малые R и G = 0), сигнал будет затухать с увеличением расстояния как ex, где α = R/2Z0

Направление распространения сигнала

Волновые уравнения, описанные выше, учитывают, что распространение волны может быть прямым и обратным. Учитывая упрощение линии без потерь (полагая R=0 и G=0), решение может быть представлено в виде:

где:

k называется волновым числом и измеряется в радианах на метр,

ω - угловая частота (в радианах в секунду),

f1 и f2 могут быть любыми функциями, и

скорость распространения волны (или фазовая скорость).

f1 представляет волну, идущую в положительном направлении оси х (слева направо) f2 представляет волну, идущую справа налево. Можно заметить, что мгновенное значение напряжения в любой точке х линии является суммой напряжений, вызванных обоими волнами.

Так как зависимость между током I и напряжением V описывается телеграфными уравнениями, можно записать

где Z0 - характеристический импеданс линии электропередачи, который для линии без потерь можно найти как

31. Операционные усилители. Логарифмический и антилогарифмирующий усилители, компаратор.

Операционный усилительусилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Идеальный операционный усилитель

Для того, чтобы рассматривать функционирование ОУ в режиме с обратной связью, необходимо вначале ввести понятие идеального операционного усилителя. Идеальный ОУ является физической абстракцией, то есть не может реально существовать, однако позволяет существенно упростить рассмотрение работы схем на ОУ благодаря использованию простых математических моделей.

Идеальный ОУ описывается формулой (1) и обладает следующими характеристиками:

  1. Бесконечно большой коэффициент усиления с разомкнутой петлей обратной связи Gopenloop.[2]

  2. Бесконечно большое входное сопротивление входов V- и V+. Другими словами, ток, протекающий через эти входы, равен нулю.

  3. Нулевое выходное сопротивление выхода ОУ.

  4. Способность выставить на выходе любое значение напряжения.

  5. Бесконечно большая скорость нарастания напряжения на выходе ОУ.

  6. Полоса пропускания: от постоянного тока до бесконечности.

Пункты 5 и 6 в действительности следуют из формулы (1), поскольку в неё не входят временны́е задержки и фазовые сдвиги. Из перечисленных условий следует важнейшее свойство идеального ОУ, упрощающее рассмотрение схем с его использованием:

Идеальный ОУ, охваченный отрицательной обратной связью, поддерживает одинаковое напряжение на своих входах [3][4]

Другими словами, при указанных условиях всегда выполняется равенство:

(2)

Не следует думать, что ОУ выравнивает напряжения на своих входах, подавая напряжение на входы «изнутри». На самом деле ОУ выставляет на выходе такое напряжение, которое через обратную связь подействует на входы таким образом, что разность входных напряжений уменьшится до нуля.

Легко убедиться в справедливости равенства (2). Допустим, (2) нарушено — имеет место небольшая разность напряжений. Тогда входное дифференциальное напряжение, усиленное в ОУ, вызвало бы (вследствие бесконечного коэффициента усиления) бесконечно большое выходное напряжение, которое, в соответствии с определением ООС, ещё уменьшило бы разность входных напряжений. И так до тех пор, пока равенство (2) не будет выполнено. Заметим, что выходное напряжение может быть любым — оно определяется видом обратной связи и входным напряжением.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]