Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по геометрии.doc
Скачиваний:
9
Добавлен:
24.09.2019
Размер:
2.62 Mб
Скачать
  1. Общее уравнение прямой. Принцип двойственности.

Пусть на проективной плоскости даны две точки A и B, имеющие в проективном репере R координаты A(a1, a2, a3), B(b1, b2, b3). Требуется составить уравнение прямой AB.

Пусть M – произвольная точка прямой AB . Ее координаты совпадают с координатами вектора x;\s\up8(( на прямой OM. Координаты точек A и B также совпадают с координатами некоторых векторов a;\s\up8(–( и b;\s\up9(–( на прямых OA и OB. Значит, векторы x;\s\up8((, a;\s\up8(( и

b;\s\up9(( компланарны. И обратно, если x;\s\up8(( компланарен a;\s\up8(( и b;\s\up9((, то M l . Поэтому M AB

x1 x2 x3

a1 a2 a3 = 0,

b1 b2 b3

Это и есть уравнение прямой AB.

После раскрытия определителя получим уравнение вида

u1x1 + u2x2 + u3x3 = 0.

Ч исла u1, u2, u3 называются координатами прямой. Кроме того, условие коллинеарности векторов x;\s\up8((, a;\s\up8((, b;\s\up9(( можно записать так: x;\s\up8(( = a;\s\up8(( + b;\s\up9((

x1 = a1 + b1,

x2 = a2 + b2,

x3 = a3 + b3,

где , R – произвольные параметры (2 + 2 0). Эти уравнения называются параметрическими уравнениями прямой.

Легко заметить, что свойства принадлежности на проективной плоскости обладают своеобразной симметрией.

Симметрия наблюдается и относительно других свойств. Таким образом, имеет место следующий принцип двойственности.

Каждому утверждению на проективной плоскости относительно точек и прямых соответствует второе утверждение, которое получается из первого заменой слова «точка» на слово «прямая», а слова «прямая» на слово «точка». Второе утверждение называется двойственным первому и, если истинно первое утверждение, то и истинно и двойственное ему.

В соответствии с этим принципом каждой фигуре также соответствует двойственная фигура. Примеры:

фигуре «прямая и три точки на ней» соответствует фигура «точка и три прямые, проходящие через нее»;

2. фигуре «три точки, не лежащие на одной прямой, и три прямые, которые проходят через эти точки» (она называется трехвершинником) соответствует двойственная ей фигура «три прямые, не проходящие через одну точку, и три точки их пересечения» (она называется трехсторонником). Ясно, что это одна и та же фигура.

  1. Теорема Дезарга.

Трехвершинником на плоскости (; ¯ называется фигура, которая состоит из трех точек, которые не лежат на одной прямой, и трех прямых, которые проходят через эти точки. Точки называются вершинами, а прямые – сторонами трехвершинника.

Пусть ABC и A B C  – два трехвершинника. Будем называть соответственными вершины A и A , B и B , C и C , а также стороны a = BC и a = B C , b = AC и b = A C  , c = AB и c = A B .

Теорема Дезарга. Если соответственные стороны трехвершинников ABC и A B C пересекаются в точках M, N, P, лежащих на одной прямой, то прямые, соединяющие соответственные вершины, сходятся в одной точке.

Обратная теорема Дезарга. Если прямые, соединяющие соответственные вершины трехвершинников ABC и A B C , сходятся в одной точке, то соответственные стороны этих трехвершинников пересекаются в точках, лежащих на одной прямой.

Эти теоремы двойственные друг другу. Согласно принципу двойственности достаточно доказать одну из них, и тогда другая тоже будет верна.