Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по линейке.doc
Скачиваний:
26
Добавлен:
24.09.2019
Размер:
293.38 Кб
Скачать
  1. Скалярное произведение в ортонормированном базисе. Смысл координат произвольного элемента в этом базисе.

Пусть e1, e2,…, en – произвольный ортонормированный базис n-мерного евклидова пространства E, а x и y – два произвольных элементов этого пространства. Найдем выражение скалярного произведения (x,y) этих элементов через их координаты относительно базиса e1, e2,…, en.

Обозначим координаты x и y относительно базиса e1, e2,…, en соответственно через x1, x2,…, xn и y1, y2,…, yn, то есть предположим, что x=x1e1+x2e2+…+xnen, y=y1e1+y2e2+…+ynen. Тогда (x,y)=( x1e1+x2e2+…+xnen, y1e1+y2e2+…+ynen).

И з последнего равенства в силу аксиом скалярного произведения и соотношений

1, при i=k

(ei,ek)=

0, при i≠k

получим (x,y)=(Ʃni=1xieink=1ykek)= Ʃni=1Ʃnk=1xiyk(eiek)=x1y1+…+xnyn.

Итак, окончательно (x,y)=x1y1+…+xnyn. Таким образом, в ортонормированном базисе скалярное произведение двух любых элементов равно сумме произведений соответствующих координат этих элементов.

Выясним смысл координат произвольного элемента x относительно произвольного ортонормированного базиса e1, e2,…, en n-мерного евклидова пространства E. Обозначим координаты элемента x относительно e1, e2,…, en через x1, x2,…, xn, то есть предположим, что x=x1e1+x2e2+…+xnen.

О бозначим далее через k любой из номеров 1, 2,…, n и умножим обе части x=x1e1+x2e2+…+xnen скалярно на элемент ek. На основании аксиом скалярного произведения и соотношений

1, при i=k

(ei,ek)=

0, при i≠k

получим (x,ek)=( Ʃni=1xiei,ek)= Ʃni=1xi(eiek)=xk. Таким образом, координаты произвольного элемента относительно ортонормированного базиса равны скалярным произведениям этого элемента на соответствующие базисные элементы. Поскольку скалярное произведение произвольного элемента x на элемент e, имеющий норму, равную единице, естественно назвать проекцией элемента x на элемент e, то можно сказать, что координаты произвольного элемента относительно ортонормированного базиса равны проекция этого элемента на соответствующие базисные элементы.

  1. Разложение евклидова пространства на прямую сумму подпространства и его ортогонального дополнения.

Пусть G – произвольное подпространство n-мерного евклидова пространства E.

Определение. Совокупность F всех элементов y пространства E, ортогональных к каждому элементу x подпространства G, называется ортогональным дополнением подпространства G.

Ортогональное дополнение F является подпространством пространства E (пусть y1, y2єF, то есть (y1,x)=0 и (y2,x)=0 для любых xєG. Тогда (α1y12y2,x)=α1(y1,x)+α2(y2,x)=0)

Теорема. Всякое n-мерное евклидово пространство E представляет собой прямую сумму своего произвольного подпространства G и его ортогонального дополнения F.

Доказательство.

Выберем в G произвольный ортонормированный базис e1, e2,…, ek. Этот базис можно дополнить элементами fk+1,…, fn пространства E до базиса во всем E. Произведя процесс ортогонализации элементов e1, e2,…, ek, fk+1,…, fn, мы получим ортонормированный элемент x пространства E. Разложив произвольный элемент x пространства E по этому базису, то есть представив его в виде x=x1e1+…+xkek+xk+1fk+1+…+xnfn, мы получим, что этот элемент x однозначно представим в виде x=x+x’’, где x= x1e1+…+xkek совершенно определенный элемент G, а x’’= xk+1fk+1+…+xnfn – совершенно определенный элемент ортогонального дополнения F (каждый элемент ek+1,…, en ортогонален к любому из элементов e1, e2,…, ek, а потому ортогонален любому элементу G; поэтому и линейная комбинация xk+1fk+1+…+xnfn ортогональна к любому элементу G, то есть является совершенно определенным элементом F). Теорема доказана.