Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по линейке.doc
Скачиваний:
26
Добавлен:
24.09.2019
Размер:
293.38 Кб
Скачать
  1. Теорема об изоморфизме евклидовых пространств.

Определение. Два евклидовых пространства E и E называются изоморфными, если между элементами этих пространств можно установить взаимно однозначное соответствие так, что если элементам x и y пространства E отвечают соответственно элементы x и y пространства E, то элементу x+y отвечает элемент x+y, элементу λx (при любом вещественном λ) отвечает элемент λx и скалярное произведение (x,y) равно скалярному произведению (x,y).

Теорема. Все евклидовы пространства одной и той же размерности n изоморфны между собой.

Доказательство.

Достаточно доказать, что любое n-мерное евклидово пространство E изоморфно евклидову пространство En упорядоченных совокупностей n вещественных чисел со скалярным произведением (x,y)=(x1y1+…+xnyn). Согласно теореме о существование ортонормированного базиса в евклидовом пространстве в евклидовом пространстве E существует ортонормированный базис e1,…, en. Каждому элементу x=x1e1+…+xnen пространства E ставим в соответствие n вещественных чисел x1, x2,…, xn, тое сть вполне определенный элемент x=(x1, x2,…, xn) пространства En.

Установленное соответствие будет взаимно однозначным. Кроме того, из теоремы о сложении и умножении координат любого элемента линейного пространства, вытекает, что если элементам x=(x1, x2,…, xn) и y=(y1, y2,…, yn) пространства E отвечают соответственно элементы x=(x1, x2,…, xn) и y=(y1, y2,…, yn) пространства En, то элементу x+y отвечает элемент x+y, а элементу λx отвечает элемент λx.

Остается доказать, что для соответствующих пар элементов x, y и x, y сохраняется величина скалярного произведения. В силу ортонормированности базиса e1,…, en и формулы (x,y)=(x1y1+…+xnyn) (x,y)=(x1y1+…+xnyn). С другой стороны в силу формулы (x,y)=(x1y1+…+xnyn), определяющей скалярное произведение в пространстве En (x,y)=(x1y1+…+xnyn). Теорема доказана.

Из этой теоремы следует, что если справедлива теорема для какого-то первого евклидова пространства размерности n, то она верна и для всех других пространств той же размерности.

  1. Комплексное евклидово пространство. Следствия из аксиом. Неравенство Коши-Буняковского. Норма. Скалярное произведение.

Определение. Комплексное линейное пространство R комплексным евклидовым пространством, если выполнены следующие два требования:

  1. Имеется правило, посредством которого любым двум элементам этого пространства x и y ставится в соответствие комплексное число, называемое скалярным произведением этих элементов и обозначаемое символом (x,y)

  2. Указанное правило подчинено следующим четырем аксиомам:

  1. ( x,y)=(y,x) (переместительное свойство или симметрия) ((y,x) число комплексно сопряженное с (y,x))

  2. (x1+x2,y)=(x1,y)+(x2,y) (распределительное свойство)

  3. (λx,y)=λ(x,y) для любого вещественного λ

  4. (x,x) представляет собой вещественное неотрицательное число, обращающееся в нуль лишь в случае, когда x – нулевой элемент.

С ледствия.

  1. ( x,λy)=λ(x,y) (из аксиом 1 и 3 заключаем, что (x,λy)=(λy,x)=λ(y,x)= λ(x,y))(

  2. (x,y1+y2)=(x,y1)+(x,y2) (из аксиом 1 и 2 получим, что (x,y1+y2)=( y1+y2,x)=(y1,x)+(y2,x)=(x,y1)+(x,y2)

Примеры.

  1. C *[a,b] – множество комплексных значений функций z(t)=x(t)+iy(t), где x(t), y(t) - вещественные непрерывные на сегменте a≤t≤b. Операции сложения и умножения определяются обычным образом. (скалярное произведение (z1,z2)=∫baz1(t)z2(t)dt)

  2. A n – элементы упорядоченной последовательности n комплексных чисел. Операции сложения и умножения на число определяются также, как и в An. (скалярное произведение (x,y)=(x1y1+…+xnyn))

Неравенство Коши-Буняковского.

Докажем, что для любых двух элементов x и y произвольного комплексного евклидова пространства справедливо неравенство |(x,y)|2≤(x,x)(y,y).

Доказательство.

Н а основании аксиомы 4дл любого комплексного числа λ справедливо неравенство (λx-y, λx-y)≥0. Так как в силу аксиом 1-3 и их следствий (λx-y, λx-y)=λλ(x,x)-λ(x,y)-λ(y,x)+(y,y)=|λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y), то неравенство (λx-y, λx-y)≥0 принимает вид |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0.

Обозначим через ϕ аргумент комплексного числа (x,y) и представим это число в тригонометрической форме (x,y)=|(x,y)|(cosϕ+isinϕ). Положим теперь комплексное число λ равным λ=t(cosϕ-isinϕ), где t – произвольное вещественное число.

И з соотношений (x,y)=|(x,y)|(cosϕ+isinϕ) и λ=t(cosϕ-isinϕ) очевидно, что |λ|=|t|, λ(x,y)=λ(x,y)=t|(x,y)|. Поэтому при выбранном нами λ неравенство |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0 переходит в неравенство t2(x,x)-2t|(x,y)|+(y,y)≥0 справедливое при любом вещественном t. Необходимым и достаточным условием неотрицательности квадратного трехчлена, стоящего в левой части этого неравенства, является неположительность его дискриминанта, то есть неравенство |(x,y)|2-(x,x)(y,y)≤0 эквивалентное неравенству |(x,y)|2≤(x,x)(y,y). Теорема доказана.

Всякое комплексное евклидово пространство является нормированным, если в нем норму любого элемента x определить соотношением ||x||=[(x,x)]1/2. В частности, во всяком комплексном евклидовом пространстве с нормой, определяемое соотношением ||x||=[(x,x)]1/2, справедливо неравенство треугольника ||x+y||≤||x||+||y||.

(Понятие угла между двумя произвольными элементами x и y в комплексном евклидовом пространстве теряет смысл, вследствие того, что скалярное произведение (x,y) является комплексным числом)