Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по линейке.doc
Скачиваний:
26
Добавлен:
24.09.2019
Размер:
293.38 Кб
Скачать
  1. Размерность линейного пространства. Две теоремы о связи размерности линейного пространства и базиса.

Определение. Линейное пространство L называется n-мерным, если в нем существует n линейно независимых элементов, а любые (n+1) элементов уже являются линейно зависимыми. При этом число n называют размерностью пространства L.

Размерность пространства L обычно обозначают символ dim L.

Определение. Линейное пространство L называют бесконечномерным, если в нем существует любое число линейно независимых элементов. (dim L=∞)

Теорема. Если линейной пространство L – размерности n, то любые n линейно независимых элементов этого пространства образуют его базис.

Доказательство.

Пусть e1, e2,…, en – любая система n линейно независимых элементов пространства L (существование хотя бы одной такой системы вытекает из определения). Если x – любой элемент пространства L, то, согласно определению система (n+1) элементов x, e1, e2,…, en линейно зависима, то есть найдутся не все равные нулю числа α0, α1,…, αn такие, что справедливо равенство α0x+α1e1+…+αnen=0. Заметим, что число α0 заведомо отлично от нуля (ибо в противном случае из равенства вытекала бы линейная зависимость элементов e1, e2,…, en). Но тогда поделив равенство на α0 и положив x1=-α10, x2=-α20,…, xn=-αn0, мы получим x=x1e1+x2e2+…+xnen. Так как элемент x произвольный элемент L, то это равенство доказывает, что система элементов e1, e2,…, en является базисом пространства L. Теорема доказана.

Теорема. Если линейное пространство L имеет базис, состоящий из n элементов, то размерность L равна n.

Доказательство. Пусть система из n элементов e1, e2,…, en является базисом пространства L. Достаточно доказать, что любые (n+1) элементов этого пространства x1, x2,…, xn+1 линейно зависимы. разложив каждый элемент по базису, будем иметь

x111e112e2+…+α1nen,

x221e122e2+…+α2nen,

xn+1(n+1)1e1(n+1)2e2+…+α(n+1)nen, где α11, α12,…, α(n+1)n – некоторые вещественные числа.

О чевидно, линейная зависимость элементов x1, x2,…, xn+1 эквивалента линейной зависимости строк матрицы

α11α12…α1n

A= α21α22…α2n

α(n+1)1α(n+1)2…α(n+1)n

Но строки указанной матрицы заведомо линейно зависимы, ибо порядок базисного минора этой матрицы (содержащей (n+1) строк и n столбцов) не превосходит n, и хотя бы одна из (n+1) ее строк не является базисной и по теореме о базисном миноре представляет собой линейную комбинацию базисных (а стало быть, и всех остальных) строк. Теорема доказана.

(Теорема о базисном миноре – базисные строки (базисные столбцы) линейно независимы. Любая строка (любой столбец) матрицы A является линейной комбинацией базисных строк (базисных столбцов))

  1. Изоморфизм линейного пространства. Теорема об изоморфизме линейных пространств одинаковой размерности.

Определение. Два произвольных вещественных линейных пространства L и L называются изоморфными, если между элементами этих пространств можно установить взаимно однозначное соответствие так, что если элементам x и y пространства L отвечают соответственно элементы x и y пространства L, то элементу x+y соответствует элемент x+y, а элементу λx при любом вещественном λ отвечает элемент λx.

Заметим, что если линейное пространство L и L изоморфны, то нулевому элементу L отвечает нулевой элемент L и наоборот. Если пространства L и L изоморфны, то максимальное количество линейно независимых элементов в каждом из этих пространств одно и то же. Иными словами два изоморфных пространства должны иметь одинаковую размерность. Стало быть пространства разной размерности не могут быть изоморфны.

Теорема. Любые два n-мерных вещественных линейных пространства L и L изоморфны.

Доказательство.

Выберем в L какой-нибудь базис e1, e2,…, en, а в L – какой-либо базис e1, e2,…, en. Поставим в соответствие каждому элементу x=x1e1+x2e2+…+xnen пространства L элемент x=x1e1+x2e2+…+xnen пространства L (то есть мы берем в качестве x тот элемент пространства L, который относительно базиса e1, e2,…, en те же самые координаты, что и элемент x относительно базиса e1, e2,…, en).

Убедимся в том, что установленное соответствие является взаимно однозначным. В самом деле, каждому элементу x пространства L однозначно соответствуют координаты x1, x2,…, xn, которые в свою очередь определяют единственный элемент x пространства L. В силу равноправности пространств L и L каждому элементу x пространства L в свою очередь соответствует единственный элемент x пространства L (Соответствие между элементами двух множеств L и L называется взаимно однозначным, если при этом соответствии каждому элементу L отвечает один и только один элемент L, причем каждый элемент L отвечает одному и только одному элементу L). Остается заметить, что элементам x и y пространства L отвечают соответственно элементы x и y пространства L, то в силу теоремы об операциях над элементами двух линейных пространств, выраженных в координатах, элементу x+y отвечает элемент x+y, а элементу λx отвечает элемент λx. Теорема доказана.

(Единственной существенной характеристикой конечномерного линейного пространства является его размерность)