Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аминокислоты и полипептиды.doc
Скачиваний:
57
Добавлен:
09.11.2019
Размер:
2.01 Mб
Скачать

1.2. Полипептиды

1.2.1. Природа пептидной связи

«Я предложил название «полипептид» для продуктов, образуемых при соединении аминокислот связями амидного типа. Простейшим представителем этого класса соединений является гликоколь, так называемый глицилглицин, H2NCH2CO-NHCH2COOH. По количеству аминокислот, входящих в состав пептида, различают ди-, три-, тетрапептиды и т.д.».

Так Эмиль Фишер определил пептидную связь как амидную связь между аминокислотами (E. Fischer, Ber., Bd. 39, S. 530-610, 1906 г.).

Основная структурная особенность полипептидов – наличие цепей, составленных из аминокислотных остатков, связанных между собой α-амидными связями:

В биохимии эти связи принято называть пептидными.

Фундаментальная концепция, принятая еще в 60-х гг. прошлого века во всех работах, посвященных изучению конформации полипептидов, заключается в планарности транс– и цис-пептидной групп. Этот факт указывает на наличие n-π сопряжения между неподеленной парой электронов атома азота (n) и π-электронами карбонильной группы, что подтверждается также меньшей длиной связи между атомом азота и атомом углерода карбонильной группы (C−N = 1,32 Å) по сравнению с длиной связи между этим же атомом азота и α-углеродным атомом (N−Cα = 1,47 Å):

Вследствие n сопряжения вращение вокруг связи C–N затруднено. Поворот вокруг этой связи обозначается торсионным углом ω. Обычно угол ω равен 180° (транс-пептидная связь), однако изучение конформаций полипептидов показало что в некоторых случаях наблюдается искажение планарной формы отдельных пептидных звеньев (так называемая «пирамидальность») в пределах ±15°. Например, в кристаллической структуре гидрохлорида глицил-L-аланина отклонение от плоскости составляет +10,2º, а для глицил-L-лейцина -11,4º.

В отличие от этого вращение вокруг связей Сα−С и N−Cα осуществляется свободно и характеризуется двугранными торсионными углами ψ и φ соответственно, однако это не значит, что торсионные углы ψ и φ могут принимать какие угодно значения.

Для каждого конкретного сочетания определенных аминокислотных остатков ввиду стерических ограничений разрешены определенные комбинации торсионных углов φ и ψ.

Для углов φ и ψ остаются разрешенными сочетания, лежащие в пределах определенных дискретных областей. Информацию о связи между торсионными углами φ и ψ в каждом пептидном звене представляют графически с помощью конформационной φ/ψ-карты (карты Рамачандрана).

На рис.1.6 представлена карта, отражающая возможные энергетически выгодные, энергетически невыгодные, но возможные, и запрещенные сочетания торсионных углов φ и ψ.

Как видно из рис. 1.6, в полипептидах реализуются весьма ограниченные соотношения торсионных углов φ и ψ. Определенные возможные сочетания углов, как правило, соответствуют определенным упорядоченным конформациям участков полипептидной цепи (подробнее о структурной организации полипептидов см. п. 1.2.2.3.1). На рис. 1.6 цифрами отмечены области углов φ и ψ, характерные для разных типов вторичной структуры белков.

Р и с.1.6. Конформационная φ/ψ – карта полипептидной цепи