Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uzbek_E.K__Suhova_YU.V._Ivahnenko_N.N._Visshaya...doc
Скачиваний:
11
Добавлен:
15.11.2019
Размер:
3.58 Mб
Скачать

Признаки возрастания и убывания функции

Следующая теорема выражает важный для практических це­лей признак строгого возрастания и строгого убывания функции и указывает правило для определения интервалов, на которых функция возрастает и убывает (интервалов монотонности функции).

Теорема.

(достаточный признак возрастания и убывания функции на интервале)

Если во всех точках некоторого интервала первая производная , то функция на этом интервале воз­растает.

Если же во всех точках некоторого интервала первая производная , то функция на этом интервале убывает.

Правило. Для определения интервалов строгого возрастания и строгого убывания функции следует решить неравенства:

и .

Пример. Найти интервалы монотонности функции

.

Решение. Областью определения данной функции является вся ось . Находим производную . Чтобы найти интервалы возрастания функции, решим неравенство или ; чтобы найти интервалы убывания функции, решим неравенство . Корни квадратного трёхчлена равны 1 и 3, поэтому распределение знаков квадратного трехчлена имеет вид

+ – +

1 3

Следовательно, на интервалах и функция возрастает, а на интервале функция убывает.

3.1. Экстремум функции

Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального максимума функции , а – локальным максимумом функции. Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального минимума функции , а – локальным минимумом функции. Минимумы и максимумы функции называют ее экстремумами.

Необходимый и достаточный признаки экстремума функции дают следующие две теоремы

ТЕОРЕМА 1

(необходимый признак экстремума)

Если точка является точкой экстремума, то в этой точке производная равна нулю или не существует.

Эта теорема имеет простую геометрическую интерпретацию.

Рис. 4 Рис. 5 Рис. 6

На рис. 4 касательная к графику функции в точке – точка экстремума – параллельна оси , т.е. угловой коэффициент (а это и есть производная) равен нулю.

На рис. 5 касательная в точке экстремума перпендикулярна оси , на рис. 6 касательная в точке с абсциссой не существует. В обоих случаях производная в точке не существует.

Точки, в которых первая производная равна нулю, а также, в которых она не существует, но функция сохраняет непрерывность, называются критическими.

Следует уяснить, что указанный признак экстремума явля­ется только необходимым, но отнюдь не достаточным: производ­ная функции может быть равна нулю или не существовать не только в тех точках, в которых функция достигает экстре­мума. Например, производная функции равна нулю в любой точке, но экстремума у этой функции нет (рис. 7). Поэтому, определив критические точки, в которых функция может достигать экстремума, надо каждую из точек в отдель­ности исследовать на основании достаточных условий существо­вания экстремума.

0

Рис. 7

ТЕОРЕМА 2

(достаточный признак экстремума)

Если при переходе через критическую точку производная меняет знак, то критическая точка является точкой экстремума. Это точка максимума, если производная меняет знак с плюса на минус, и точка минимума, если производная меняет знак с минуса на плюс.

Пример. Исследовать на экстремум функцию .

Решение.

  1. Область определения .

  2. Находим критические точки, для чего найдем производную и приравняем ее к нулю . Отсюда , , . Точек, где не существует, нет.

  3. Исследуем критические точки по достаточному признаку экстремума. Это удобно делать в таблице, куда заносятся критические точки и точки разрыва функции (в данном примере точек разрыва нет).

0

0

0

0

нет экстремума

нет экстремума

Для нахождения знака производной достаточно подставить в нее любое значение из рассматриваемого интервала. Так, исследуя интервал , можно взять, например, точку и подставить это значение в производную: . Исследовав, указанным образом знаки производной в интервалах , замечаем, что производная меняет знак при переходе через точку 0 (с “+” на “”). Значит, – точка максимума. Значение функции в этой точке .

Заметим, что, исследуя функцию на экстремум, мы одновременно находим и интервалы монотонности функции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]