Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Елфимов.doc
Скачиваний:
28
Добавлен:
17.11.2019
Размер:
3.22 Mб
Скачать

1.2. Равновесное состояние p-n перехода

1.2.1. Образование p-n перехода

Рассмотрим образование несимметричного p-n перехода при идеальном контакте двух полупроводников с различным типом проводимости. Через плоскость металлургического контакта (плоскость, где изменяется тип примесей, преобладающих в полупроводниках) возникает диффузия из-за градиента концентрации носителей заряда. В результате диффузии носителей заряда нарушается электрическая нейтральность примыкающих к металлургическому контакту частей монокристалла полупроводника.

Пусть концентрация акцепторов в области полупроводника p-типа больше концентрации доноров NД в области полупроводника n-типа: Nа>>NД. При этом концентрация основных носителей заряда - дырок в полупроводнике - p-типа будет больше концентрации основных носителей заряда - электронов в полупроводнике n-типа: pp>nn. Соответственно концентрация неосновных носителей заряда - электронов в полупроводнике p-типа - меньше концентрации неосновных носителей заряда - дырок в полупроводнике n-типа: np<pn. Образование несимметричного p-n перехода посредством металлургического контакта двух полупроводников с различным типом проводимости иллюстрируется рис.1. На рис.1 указано, что внешнее напряжение на переход не подается, а p- и n-области соединены между собой, подтверждая рассмотрение p-n перехода в равновесном состоянии.

Р ис.1

Допустим, Nа=1018см-3, а NД=1015см-3. Поясним процесс образования p-n перехода с помощью диаграмм, представленных на рис.2. На рис.2 обозначено:

+ - дырка - основной носитель заряда полупроводника p-типа;

- - электрон - основной носитель заряда полупроводника n-типа;

- положительный ион донора; отрицательный ион акцептора;

lp - ширина p-n перехода в области полупроводника p-типа; ln - ширина p-n перехода в области полупроводника n-типа; lo - ширина p-n перехода в равновесном состоянии.

Распределения концентраций основных и неосновных носителей заряда в полупроводниках определяются из закона действующих масс. Так, для полупроводника p-типа закон действующих масс записывается в виде ni2=ppnp=Nаnp.

Допустим, что для изготовления p-n перехода используется полупроводниковый материал германий, у которого собственная концентрация (концентрация свободных носителей заряда в полупроводнике i-типа) носителей заряда составляет величину niGE=2,51013см-3 . При условии pp=Nа=1018см-3 из закона действующих масс находим, что

np= ni2 / Nа=6,251026 / 1018= 6,25108см-3.

В полупроводнике n-типа закон действующих масс определяется соотношением ni2=nnpn=NДpn. При условии nn=NД=1015см-3 из закона действующих масс получаем, что pn=6,251011см-3 .

Диаграмма 1

Диаграмма 2

Диаграмма 3

Рис.2

В результате разности концентраций подвижных (диаграмма 2 рис.2) имеет место градиент концентрации носителей заряда каждого знака. Под действием градиента концентрации будет происходить диффузия основных носителей заряда из области с высокой концентрацией в область с меньшей их концентрацией. Дырки переходят из области полупроводника p-типа в область полупроводника n-типа, оставляя в p-области отрицательные ионы акцепторов. В области полупроводника n-типа дырки рекомбинируют с электронами, обнажая в процессе рекомбинации положительно заряженные ионы доноров.

Аналогично и электроны из области полупроводника n-типа переходят в область полупроводника p-типа, оставляя в полупроводнике n-типа положительные ионы доноров. В области полупроводника p-типа при рекомбинации электронов с дырками дополнительно обнажаются отрицательные ионы акцепторов. Отрицательные ионы акцепторов и положительные ионы доноров находятся в узлах кристаллической решетки, поэтому не могут двигаться по кристаллу полупроводника.

Таким образом, вблизи контакта полупроводников с различным типом проводимости возникает двойной слой пространственного заряда: отрицательный в области полупроводника p-типа; положительный в области полупроводника n-типа (диаграмма 1 рис.2).

В области объемных зарядов мала концентрация подвижных носителей заряда, поэтому этот слой обладает повышенным сопротивлением и называется запорным слоем или p-n переходом.

И так, электронно-дырочный или p-n переход - это тонкий слой полупроводника, возникающий на границе раздела двух полупроводников с разным типом проводимости, который обеднен подвижными носителями заряда и обладает высоким сопротивлением.

Диаграмма 4