Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Листвин_ОптичВолокна_2003.doc
Скачиваний:
43
Добавлен:
19.11.2019
Размер:
15.86 Mб
Скачать

§ 22. Чирпинг эффект при фазовой самомодуляции волн

Фазовая самомодуляция волн (SPM - Self-Phase Modulation) обусловлена зависимостью показателя преломления волокна от интенсивности распространяющегося в нем света. При изменении интенсивности волны изменяется показатель преломления волокна, что и приводит модуляции фазы волны.

Для нашего анализа существенно то, что мощность в импульсе является функцией времени - на заднем фронте импульса мощность увеличивается во времени, а на переднем фронте уменьшается. Поэтому возникающий из-за SPM эффекта дополнительный набег фазы также является функцией времени - на заднем фронте импульса фазовый сдвиг увеличивается во времени, а на переднем уменьшается. А так как частота является производной фазы по времени, то импульс оказывается промодулированным не только по амплитуде, но и по частоте. В результате длина волны несущей на заднем фронте импульса оказывается короче длины волны несущей на переднем фронте импульса.

Таким образом, SPM эффект приводит к появлению чирпинга и в отсутствие дисперсии в волокне. Характерно, что в отсутствие дисперсии SPM эффект приводит к уширению спектра импульса, но не меняет ширину импульса (рис. 1.34).

Рис.1.34. Фазовая самомодуляция волн (SPM эффект) в волокне с нулевой дисперсией. Ширина импульса не меняется, но он приобретает чирпинг (частотную модуляцию). Спектр импульса становится шире.

В волокне с дисперсией SPM эффект приводит одновременно к изменению как ширины спектра, так и ширины импульса. Напомним, что в линейном приближении дисперсия приводит только к изменению ширины импульса, но не меняет ширину его спектра (см. рис. 1.30).

С увеличением мощности излучения в волокне с отрицательной дисперсией ширина импульса увеличивается. Происходит это потому, что благодаря SPM эффекту длина волны несущей вблизи заднего фронта импульса оказывается короче длины волны вблизи переднего фронта. А так как в волокне с отрицательной дисперсией скорость распространения волн уменьшается с уменьшением длины волны, то задний фронт импульса начинает отставать от переднего фронта, и ширина импульса увеличивается.

В волокне с положительной хроматической дисперсией при увеличении мощности импульс вначале сжимается. Волокно с положительной дисперсией ускоряет задний фронт импульса (с более короткими волнами) и замедляет передний фронт (с более длинными волнами), что и приводит к сжатию импульса.

Сжатие импульса наблюдается при не слишком большой мощности, когда уширение спектра импульса из-за SPM эффекта еще мало. При большой мощности уширение спектра импульса становится уже основным фактором, определяющим ширину импульса при его распространении в волокне с дисперсией. Такой импульс будет уширяться независимо от знака дисперсии волокна.

При промежуточном значении мощности эффект сжатия импульса (наблюдаемый при малой мощности) может в принципе компенсировать эффект уширения импульса (наблюдаемый при большой мощности), т. е. возможна такая ситуация, когда импульс будет распространяться в волокне, не меняя своей ширины. Действительно, как показывает более точный анализ, можно подобрать такую мощность и форму импульса, что в волокне с положительной дисперсией он будет распространяться, не меняя своей формы. Такие импульсы называются солитонами. Их применение в оптической связи весьма перспективно и в настоящее время сдерживается только стремительным развитием DWDM систем.