Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по математике.doc
Скачиваний:
2888
Добавлен:
07.02.2015
Размер:
8.48 Mб
Скачать

99. Основные выводы § 19

При изучении материала данного параграфа мы уточнили многие известные из школьного курса математики понятия, связав их с изме­рением длины отрезка. Это такие понятия, как:

дробь (правильная и неправильная);

равные дроби;

несократимая дробь;

положительное рациональное число;

равенство положительных рациональных чисел;

смешанная дробь;

бесконечная периодическая десятичная дробь;

бесконечная непериодическая десятичная дробь;

иррациональное число;

действительное число.

Мы выяснили, что отношение равенства дробей есть отношение эквивалентности и воспользовались этим, определяя понятие положи­тельного рационального числа. Выяснили также, как связано с изме­рением длин отрезков сложение и умножение положительных рацио­нальных чисел и получили формулы для нахождения их суммы и произведения.

Определение отношения «меньше» на множестве Q+ позволило назвать его основные свойства: оно упорядоченное, плотное, в нем нет наименьшего и наибольшего числа.

Мы доказали, что множество Q+ положительных рациональных чисел удовлетворяет всем тем условиям, которые позволяют его считать расширением множества N натуральных чисел.

Введя десятичные дроби, мы доказали, что любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Бесконечные непериодические дроби считают записями иррациональных чисел.

Если объединить множества положительных рациональных и иррациональных чисел, то получаем множество положительных действительных чисел: Q+∪J+ =R+.

Если к положительным действительным числам присоединить отрицательные действительные числа и нуль, то получаем множество Rвсех действительных чисел.

Глава IV. Геометрические фигуры и величины

Лекция 52. Система геометрических понятий, изучаемых в школе

План:

1. Сущность аксиоматического метода в построении теории. Краткие исторические сведения о возникновении геометрии.

2. О геометрии Евклида и Лобачевского. Аксиомы принадлежности точек, прямых и плоскостей, аксиомы порядка, аксиомы равенства (конгруэнтности), непрерывности и параллельности.

3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.

§ 20. Из истории возникновения и развития геометрии

1. Сущность аксиоматического метода в построении теории

При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

- некоторые понятия теории выбираются в качестве основныхи принимаются без определения;

- каждому понятию теории, которое не содержится в списке основных, дается определение; в нем разъясняется смысл понятия с помощью основных и предшествующих данному понятий;

- формулируются аксиомы– предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;

- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

Если построение теории осуществляется аксиоматическим методом, т.е. по названным выше правилам, то говорят, что теория построена дедуктивно.

При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения

Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в данной курсе будет не всегда строгим – некоторые доказательства мы опускаем в силу большой сложности, но каждый такой случай будем оговаривать.

Еще один пример аксиоматического построения теории – геометрия Евклида и геометрия Лобачевского.