Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GEK_polny.docx
Скачиваний:
61
Добавлен:
25.03.2015
Размер:
618.41 Кб
Скачать

112 Азотная кислота и ее соли. Особенности свойств. Химические основы производства азотной кислоты.

Азотная кислота. Чистая азотная кислота HNO3 — бесцветная жидкость плотностью 1,51 г/см при - 42 °С застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с 'влагой воздуха мелкие капельки тумана,

Азотная кислота не отличается прочностью, Уже под влиянием света она постепенно разлагается:

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью распадается на ионы Н+ и- NO3.

Окислительные свойства азотной кислоты. Характерным свойством азотной кислоты является ее ярко выраженная окислительная способность. Азотная кислота—один

из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор — в фосфорную. Тлеющий уголек, погруженный в концентрированную HNO3, ярко разгорается.

Азотная кислота действует почти на все металлы (за исключением золота, платины, тантала, родия, иридия), превращая их в нитраты, а некоторые металлы—в оксиды.

Концентрированная HNO3 пассивирует некоторые металлы. Еще Ломоносов открыл, что железо, легко растворяющееся в разбавленной азотной кислоте, не растворяется

в холодной концентрированной HNO3. Позже было установлено, что аналогичное действие азотная кислота оказывает на хром и алюминий. Эти металлы переходят под

действием концентрированной азотной кислоты в пассивное состояние.

Степень окисленности азота в азотной кислоте равна 4-5. Выступая в качестве окислителя, НNО3 может восстанавливаться до различных продуктов:

Получение.

1. В лаборатории азотную кислоту получают при взаимодействии безводных нитратов с концентрированной серной кислотой:

Ba (NO3)2 + H2SO4 → BaSO4↓ + 2HNO3.

2. В промышленности получение азотной кислоты идет в три стадии:

1. Окисление аммиака до оксида азота (II):

4NH3 + 5O2 → 4NO + 6 H2O

2. Окисление оксида азота (II) в оксид азота (IV):

2NO + O2 → 2NO2

3. Растворение оксида азота (IV) в воде с избытком кислорода:

4NO2 + 2H2O + O2 → 4HNO3

Химические свойства. Проявляет все свойства кислот. Азотная кислота одна из наиболее сильных минеральных кислот.

1. В водных растворах она полностью диссоциирована на ионы:

HNO3 → H+ + NO-3

2. Реагирует с оксидами металлов:

MgO + 2HNO3 → Mg(NO3)2 + H2O,

3. Реагирует с основаниями:

Mg(OH)2 + 2HNO3 → Mg(NO3)2 + 2H2O,

4. КонцентрированнаяHNO3 при взаимодействии с наиболее активными металлами до Al восстанавливается до N2О. Например:

4Ca + 10HNO3 → 4Ca(NO3)2 + N2O↑+ 5H2O

5. Концентрированная HNO3 при взаимодействии с менее активными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO2. Например:

4HNO3 + Ni → Ni(NO3)2 + 2NO2↑ + 2H2O.

6. Аналогично концентрированная HNO3 реагирует с неметаллами. Неметалл при этом окисляется. Например:

5HNO3 +Pо → HP+5O3 + 5NO2↑+ 2H2O.

Cоли азотной кислоты – нитраты при нагревании разлагаются по схеме:

левее Mg: MeNO3 → MeNO2 + O2

Mg – Cu: MeNO3 → MeO + NO2↑ + O2

правее Сu MeNO3 → Me + NO2↑ +O2

Применение.

Азотную кислоту применяют для получения азотных удобрений, лекарственных и взрывчатых веществ.

  1. Водород. Строение атома, физические и химические свойства, получение и применение водорода.

ВОДОРОД, H, химический элемент с атомным номером 1, атомная масса 1,00794.

Природный водород состоит из смеси двух стабильных нуклидов с массовыми числами 1,007825 (99,985 % в смеси) и 2,0140 (0,015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида — трития 3Н (период полураспада Т1/2=12,43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов), и к 7-й группе (группе VIIA галогенов).

Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos — первый), обозначают символом Н, а его ядро называют протоном, символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (лат Deuterium, от греческого deuteros — второй), для его обозначения используют символы 2Н, или D (читается «де»), ядро d — дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos — третий), символ 3Н или Т (читается «те»), ядро t — тритон.

Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s1. В соединениях проявляет степени окисления +1 и, реже, –1 (валентность I). Радиус нейтрального атома водорода 0,0529 нм. Энергия ионизации атома 13,595 эВ, сродство к электрону 0,75 эВ. По шкале Полинга электроотрицательность водорода 2,20. Водород принадлежит к числу неметаллов.

В свободном виде — легкий горючий газ без цвета, запаха и вкуса.

Физические и химические свойства: при обычных условиях водород — легкий (плотность при нормальных условиях 0,0899 кг/м3) бесцветный газ. Температура плавления –259,15°C, температура кипения –252,7°C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м3 и является самой легкой жидкостью. Стандартный электродный потенциал Н2/Н– в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0°C растворимость составляет менее 0,02 см3/мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо — в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143,06 МДж/кг.

Существует в виде двухатомных молекул Н2. Константа диссоциации Н2 на атомы при 300 К 2,56·10–34. Энергия диссоциации молекулы Н2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н2 0,07414 нм.

Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин, то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н2 и 25% п-Н2. Физические свойства п- и о-Н2 немного различаются между собой. Так, если температура кипения чистого о-Н2 20,45 К, то чистого п-Н2 — 20,26 К. Превращение о-Н2 в п-Н2 сопровождается выделением 1418 Дж/моль теплоты.

Высокая прочность химической связи между атомами в молекуле Н2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (с взрывом) только с газообразным фтором (F):

H2 + F2 = 2HF + Q.

Если смесь водорода и хлора (Cl) при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом (O) происходит со взрывом, если в смесь этих газов внести катализатор — металлический палладий (Pd) (или платину (Pt)). При поджигании смесь водорода и кислорода (O) (так называемый гремучий газ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде (O) спокойно горит с выделением большого количества теплоты:

H2 + 1/2O2 = Н2О + 285,75 кДж/моль

С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом (N) водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400°C в присутствии катализатора — железа (Fe):

3H2 + N2 = 2NH3 + Q.

Также только при нагревании водород реагирует с серой (S) с образованием сероводорода H2S, с бромом (Br) — с образованием бромоводорода НBr, с иодом (I) — с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором (B), кремнием (Si), фосфором (P) водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.

При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием (Mg) с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН2. Полимерный гидрид алюминия (AlH3)x — один из самых сильных восстановителей — получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием (Zr), гафнием (Hf) и др.) водород образует соединения переменного состава (твердые растворы).

Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего, надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо (Fe), никель (Ni), свинец (Pb), вольфрам (W), медь (Cu) и др.). Так, при нагревании до температуры 400-450°C и выше происходит восстановление железа (Fe) водородом из его любого оксида, например:

Fe2O3 + 3H2 = 2Fe + 3H2O.

Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем (Mn). Более активные металлы (в том числе и марганец (Mn)) до металла из оксидов не восстанавливаются.

Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это — так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С2Н4, причем образуется этан С2Н6:

С2Н4+ Н2 = С2Н6.

Взаимодействием оксида углерода (II) и водорода в промышленности получают метанол:

2 + СО = СН3ОН.

В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э'... Н... Э'', причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.

Получение: водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент — метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом (O):

CH4 + H2O = CO + 3H2 и CH4 + 1/2 O2 = CO2 + 2H2

Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка (Zn) с соляной кислотой.

Применение: водород используют при синтезе аммиака NH3, хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твердый жир — маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода (O) с водородом используют при сварке.

Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600°C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются, по меньшей мере, до середины 21-го века.

Особенности обращения: водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).

27 Положение микроорганизмов в системе живого мира. Разнообразие микроорганизмов и их общность с другими организмами. Существенные особенности микроорганизмов: малые размеры клетки, высокая метаболическая активность, высокая пластичность их метаболизма (быстрое приспособление к меняющимся условиям окружающей среды, «всюдность»), способность к быстрому размножению, слабая морфологическая дифференцировка, многообразие метаболических процессов.

Микрооргани́змы, (микро́бы) — собирательное название группы живых организмов, которые слишком малы для того, чтобы быть видимыми невооружённым глазом (их характерный размер — менее 0,1 мм). В состав микроорганизмов входят как безъядерные (прокариоты: бактерии, археи), так и эукариоты: некоторые грибы, протисты, но не вирусы, которые обычно выделяют в отдельную группу. Большинство микроорганизмов состоят из одной клетки, но есть и многоклеточные микроорганизмы, точно также как и есть некоторые одноклеточные макроорганизмы, видимые невооружённым взглядом, например Thiomargarita namibiensis, представители рода Caulerpa (являются гигантскими поликарионами). Изучением этих организмов занимается наука микробиология.

Повсеместная распространенность и суммарная мощность метаболического потенциала микроорганизмов определяет их важнейшую роль в круговороте веществ и поддержании динамического равновесия в биосфере Земли.

Краткое рассмотрение различных представителей микромира, занимающих определенные «этажи» размеров, показывает, что, как правило, величина объектов определенно связана с их структурной сложностью. Нижний предел размеров свободноживущего одноклеточного организма определяется пространством, требуемым для упаковки внутри клетки аппарата, необходимого для независимого существования. Ограничение верхнего предела размеров микроорганизмов определяется, по современным представлениям, соотношениями между клеточной поверхностью и объемом. При увеличении клеточных размеров поверхность возрастает в квадрате, а объем — в кубе, поэтому соотношение между этими величинами сдвигается в сторону последнего.

Микроорганизмы обитают почти повсеместно, где есть вода, включая горячие источники, дно мирового океана, а также глубоко внутри земной коры. Они являются важным звеном в обмене веществ в экосистемах, в основном выполняя роль редуцентов, но в некоторых экосистемах они — единственные производители биомассы — продуценты.

Микроорганизмы, обитающие в различных средах, участвуют в круговороте серы, железа, фосфора и других элементов, осуществляют разложение органических веществ животного, растительного происхождения, а также абиогенного происхождения (метан, парафины), обеспечивают самоочищение воды в водоемах.

Впрочем, не все виды микроорганизмов приносят человеку пользу. Весьма многочисленное количество видов микроорганизмов является условно-патогенной или патогенной для человека и животных. Некоторые микроорганизмы вызывают порчу сельскохозяйственной продукции, обедняют почву азотом, вызывают загрязнение водоемов, накопление в продуктах питания ядовитых веществ (например, микробных токсинов).

Микроорганизмы отличаются хорошей приспособляемостью к действию факторов внешней среды. Различные микроорганизмы могут расти при температуре от −6° до +50—75°. Рекорд выживаемости при повышенной температуре поставили археи, некоторые изученные культуры которых растут на питательных средах свыше 110 °C, например, Methanopyrus kandleri (штамм 116) растёт при 122 °C, рекордно высокой температуре для всех известных организмов.

В природе среда обитания с такой температурой существует под давлением в горячих вулканических источниках на дне океанов (Черные курильщики).

Известны микроорганизмы, процветающие при гибельных для многоклеточных существ уровнях ионизирующего излучения, в широком интервале значений pH, при 25 % концентрации хлорида натрия, в условиях различного содержания кислорода вплоть до полного его отсутствия (Анаэробные микроорганизмы).

В то же время, патогенные микроорганизмы вызывают болезни человека, животных и растений.

Наиболее общепризнанные теории о происхождении жизни на Земле предполагают, что протомикроорганизмы были первыми живыми организмами, появившимися в процессе эволюции.

В настоящее время все микроорганизмы делят на 3 царства:

1. Procariotae. К данному царству можно отнести все виды бактерий, риккетсий, хламидий, микоплазм и т.д. В клетках есть ядро с одной хромосомой. Ядро не отделено от цитоплазмы клетки. Простой цикл деления путем перетяжки. Есть ряд уникальных органелл, таких как плазмиды, мезосомы. Отсутствует способность к фотосинтезу.

2. Eucariotae. Представителями данного царства являются грибы и простейшие. Клетка содержит ядро, отграниченное от цитоплазмы мембраной, с несколькими хромасомами. Есть ряд органелл, характерных для высших животных: митохондрии, эндоплазматическую сеть, аппарат Гольджи. Некоторые представители данного царства имеют хлоропласты и способны к фотосинтезу. Обладают сложным жизненным циклом.

3. Vira. К данному царству относятся вирусы. Отличительными чертами вириона является наличие только одного типа нуклеиновых кислот: РНК или ДНК, заключенного в капсид. Общей внешней оболочки у вируса может не быть. Размножение вируса может происходить только после встраивания в другую клетку, где и происходит репликация.

Многие авторы не относят вирусы к микроорганизмам, выделяя их в отдельную группу живых существ.

1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]