Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GEK_polny.docx
Скачиваний:
61
Добавлен:
25.03.2015
Размер:
618.41 Кб
Скачать

88 Строение и свойства антител

Антитела (иммуноглобулины, ИГ, Ig) — особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул, и обладающих способностью очень избирательно связываться с конкретными видами молекул, которые в связи с этим называют антигенами. Антитела являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом — характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) — IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Строение Антитела являются относительно крупными (~150 кДа — IgG) гликопротеинами, имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из VH, CН1, шарнира, CH2- и CH3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из VL- и CL- доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding — антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable — фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер — IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Антитела обладают двумя свойствами:

-специфичность, т. е. способность вступать во взаимодействие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование;

-гетерогенность по физико-химическому строению, по специфичности, по генетической детерминированности образования (по происхождению).

Помимо специфичности одним из основных свойств иммуноглобулинов является их гетерогенность, т. е. неоднородность популяции иммуноглобулинов по генетической детерминированности их образования и по физико-химическому строению.

73 Двумембранные органоиды клетки.

1. Митохондрии. Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Длина митохондрий 1,5-10 мкм, диаметр — 0,25-1,00 мкм. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты — кристы. Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки. Они увеличивают поверхность внутренней мембраны, на которой размещаются мультиферментные системы, участвующие в синтезе молекул АТФ.

Внутреннее пространство митохондрий заполнено матриксом. В матриксе содержатся кольцевая молекула митохондриальной ДНК, специфические иРНК, тРНК и рибосомы (прокариотического типа), осуществляющие автономный биосинтез части белков, входящих в состав внутренней мембраны. Эти факты свидетельствуют в пользу происхождения митохондрий от бактерий-окислителей (согласно гипотезе симбиогенеза). Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.

Функции митохондрий — кислородное расщепление углеводов, аминокислот, глицерина и жирных кислот с образованием АТФ и синтез митохондриальных белков.

2. Пластиды. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета, хлоропласты — зеленые пластиды. Пластиды образуются из пропластид – двумембранных пузырьков размером до 1 мкм.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты. Основная функция — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результате образования выпячиваний внутренней мембраны, возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов — строма — содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии. Эти факты, согласно гипотезе симбиогенеза, также свидетельствуют в пользу происхождения пластид от синезеленых (цианобактерий). См вопрос 2.

50 Взимодействие неллельных генов. Неалле́льные ге́ны — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют четыре формы и взаимодействия неаллельных генов:

-комплементарность;

-эпистаз;

-полимерия;

-плейотропия.

Комплемента́рное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных — удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 — сферические и 1 — удлинённые.

Эписта́з — взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый — гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз — это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимери́я — взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 по фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

Пример: цвет кожи у людей, который зависит от четырёх генов.

Плейотропи́я— явление множественного действия гена. Выражается в способности одного гена влиять на несколько фенотипических признаков. Таким образом, новая мутация в гене может оказать влияние на некоторые или все связанные с этим геном признаки. Этот эффект может вызвать проблемы при селективном отборе, когда при отборе по одному из признаков лидирует один из аллелей гена, а при отборе по другим признакам — другой аллель этого же гена.

Механизм. Плейотропия — это действие одного гена на несколько фенотипических признаков. Продукт фактически каждого гена участвует как правило в нескольких, а иногда и в очень многих процессах, образующих метаболическую сеть организма. Особенно характерна плейотропия для генов, кодирующих сигнальные белки.

Примеры:

Человек:

-Ген, обусловливающий рыжие волосы, обусловливает более светлую окраску кожи и появление веснушек.

-Фенилкетонурия (ФКУ), болезнь, вызывающая задержку умственного развития, выпадение волос и пигментацию кожи, может быть вызвана мутацией в гене, кодирующем фермент фенилаланин-4-гидроксилаза, который в норме катализирует превращение аминокислоты фенилаланина в тирозин.

-Рецессивная мутация в гене, кодирующем синтез глобиновой части в гемоглобине (замена одной аминокислоты), вызывающая серповидную форму эритроцитов, изменения в сердечно-сосудистой, нервной, пищеварительной и выделительной системах.

-Арахнодактилия, вызываемая доминантной мутацией, проявляется одновременно в изменениях пальцев рук и ног, вывихах хрусталика глаза и врождённых пороках сердца.

-Галактоземия, вызываемая рецессивной мутацией гена, кодирующего фермент галактозо-1-фосфатуридилтрансфераза, приводит к слабоумию, циррозу печени и слепоте.

Другие примеры:

-Белые голубоглазые коты имеют склонность к глухоте.

-Летальная мутация, вызывающая нарушения в развитии хрящей у крыс, приводит к смерти за счет большого количества патологий в разных системах организма.

-У овса окраска чешуйки и длина ости семени регулируются одним геном.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]