Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTU_lektsii.doc
Скачиваний:
26
Добавлен:
08.11.2018
Размер:
3.95 Mб
Скачать

Связь между частотными и временными характеристиками линейной системы.

Пусть имеется предварительно невозбужденная (с нулевыми начальными условиями) линейная автоматическая система, причем ее амплитудно-фазовая частотная характеристика по отношению к управляющему воздействию есть Ф(j).

Предположим, что в момент времени t=0 на вход системы подано управляющее воздействие в виде дельта-фуекции, т.е. g(t)=(t).

Реакция системы на дельта-функцию называется импульсной переходной функцией и обычно обозначается k(t).

Импульсная переходная функция является одной из временных характеристик автоматической системы.

Т.к. ,

,

или учитывая, что при t<0, получим

. (1)

Следовательно, амплитудно-фазовая частотная характеристика системы является спектральной характеристикой импульсной переходной функции. Справедлива также формула обратного преобразования Фурье.

(t>0). (2)

Реакция x(t) системы на воздействие в виде единичной ступенчатой функции 1(t) называется переходной функцией системы и обозначается h(t).

Учитывая, что

Найдем спектральную характеристику переходной функции

(3)

или , (4)

т.к. h(t)=0 при t<0.

Переходная функция является временной характеристикой системы. Она может быть определена с помощью обратного преобразования Фурье.

(t>0) (5)

Т.к. умножению на j соответствует операция дифференцирования во временной области, можно записать

Используя фильтрующие свойства дельта-функций второе слагаемое при Ф(j0) равно нулю

,

Откуда

(6)

Т.е.

(7)

Пусть теперь на вход автоматической системы в момент времени t=0 поступает управляющее воздействие g(t) общего вида найдем реакцию x(t) системы на это воздействие.

Для этого воспользуемся теоремой о свертывании функций в вещественной области.

и равенство

(*)

(8)

Формула (8) является временным аналогом формулы (*), характеризующей спектральные (частотные) соотношения в автоматической системе. Интеграл в правой части называется интегралом Дюамеля.

Рассмотрим детальнее роль импульсной переходной функции k(t-). Управляющее воздействие g(t), поступающее в автоматическую систему, можно аппроксимировать ступенчатой ломаной с бесконечно большим числом ступеней и бесконечно малым шагом каждой ступени.

Тогда возбуждение системы воздействием g(t) сводится к возбуждению системы непрерывной серией импульсов величиной g()d. Реакция системы на единичный импульс в виде дельта-функции, приложенный к системе в момент времени t=, известна и равна k(t-). Очевидно, что реакция системы на импульс величиной g()d, приложенный в тот же момент t= есть k(t-)g()d. Реакция системы на всю совокупность импульсов, т.е. на g(t) определяется равенством

,

т.е. состоит из суммы реакций на каждый импульс в отдельности.

Пусть t является моментом наблюдения за реакцией системы x(t),

t- - интервал времени между приложением к системе импульса g()d и рассматриваемым (текущим) моментом t>.

Функция k(t-) будет определять степень участия импульсов, приложенных к системе до рассматриваемого момента времени в образовании значения x(t) реакции системы в текущий момент времени t. Оно (влияние) зависит от характера импульсной переходной функции k(t-) (см. реакции k1(t-) и k2(t-)). Следовательно, импульсная переходная функция как бы «взвешивает» роль каждого импульса, приложенного к системе в момент t=, в образовании реакции системы в рассматриваемый момент времени t>. По этой причине часто импульсную переходную функцию называют также весовой функцией.

Кроме того, на основании свойств преобразования Фурье можно установить еще одно соответствие между импульсной переходной функцией k(t) и амплитудно-фазовой частотной характеристикой, а именно:

(9)

где а – положительная постоянная, независящая от t и .

Отсюда следует, что если k(t) растягивать (сжимать) вдоль оси времени t, то соответствующая ей амплитудно-частотная характеристика будет сжиматься (растягиваться) вдоль оси частот .

Пример. Определить АФХ и АЧХ линейной системы, если весовая функция этой системы

.

По (1) имеем

.

Весовой функции в виде бесконечно короткого импульса соответствует бесконечно широкая частотная характеристика.

Построение логарифмических частотных характеристик.

Частотные методы исследования линейных систем автоматического регулирования существенно упростились, после того, как для построения графиков частотных характеристик были введены логарифмические шкалы. Частотные характеристики, построенные в логарифмических шкалах, называется логарифмическими частотными характеристиками.

Чаще всего строятся характеристики - логарифмическая амплитудно-частотная характеристика (ЛАЧХ) и - логарифмическая фазовая характеристика. (ЛФХ)

Для построения ЛАЧХ используется модуль АЧХ выраженный в децибелах

Бел представляет собой логарифмическую единицу, соответствующую десятикратному увеличению мощности. Один бел соответствует увеличению мощности в 10 раз, 2 бела – в 100 раз, 3 бела – в 1000 раз и т.д.

Децибел равен одной десятой части бела. Если модуль был бы отношением мощностей, то в правой части (1) находился бы множитель 10. Т.к. модуль представляет собой отношение не мощностей, а выходной и входной величин (перемещений, скоростей, токов и т.п.), то увеличение этого отношения в 10 раз соответствует увеличению мощности в 100 раз, что соответствует 2 белам или 20 децибелам. Поэтому в правой части (1) находится множитель 20. Один децибел соответствует изменению амплитуды в раз.

Усилению соответствуют положительные децибелы, а ослаблению – отрицательные.

При построении ЛАЧХ по оси абсцисс откладывается угловая частота в логарифмическом масштабе, т.е. откладывается десятичный логарифм частоты, а около отметки указывается само значение частоты.

При построении ЛАЧХ на оси ординат наносится шкала модулей в децибелах.

При построении ЛФХ на оси абсцисс используется логарифмическая шкала частот, а на оси ординат откладывается фазовый сдвиг, т.е. в град.

Для удобства одновременного построения ЛАЧХ и ЛФХ шкалы частот совмещаются, а шкала фазовых сдвигов наносится так, чтобы совместить фазовый сдвиг – 1800 с нулем шкалы модулей. При этом отрицательные фазовые сдвиги откладываются вверх.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]