Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка для стоматологов, часть 2.doc
Скачиваний:
109
Добавлен:
16.09.2019
Размер:
13.71 Mб
Скачать

Общая характеристика реакционной способности.

Поли- и гетерофункциональные соединения могут проявлять свойства, присущие монофункциональным соединениям, т. е. спо­собность вступать в реакции по каждой функциональной группе. Поэтому наблюдается определенное сходство в поведении моно­функциональных и полигетерофункциональных соединений.

Например, обе функциональные группы в гидрокси- и амино­кислотах в ряде реакций сохраняют свои характерные свойства. Так, за счет карбоксильной группы —СООН эти соединения проявляют кислотный характер, способность к декарбоксилированию, образуют

функциональные производные и т.д.

Специфические реакции.

Хелатообразование. Поли- и гетерофункциональные соедине­ния, содержащие одновалентные функциональные группы, такие, как ОН- или NН2-группы, у соседних атомов углерода, при взаи­модействии с гидроксидами тяжелых металлов, например гидроксидом меди(II), образуют внутрикомплексные, так называемые хелатные, соединения. Такие соединения обычно хорошо раство­римы в воде и интенсивно окрашены, поэтому реакция использует­ся как качественная. Примером может служить образование гликолята меди(II) (реакция (10.1)).

этиленгликоль гликолят меди (II)

(синее окрашивание)

Аналогичные внутрикомплексные соединения образуются в случае α-аминоспиртов, α-аминокислот и других соединений.

внутрикомплексное соединение внутрикомплексная соль

меди (II) с α-аминоспиртом меди (II) с α-аминокислотой

Внутримолекулярная циклизация. Молекулы многих полн­или гетерофункциональных соединений могут принимать в про­странстве клешневидные конформации, в которых различные функциональные группы оказываются сближенными (см. 3.2-2). Вследствие этого между ними может осуществляться взаимодейст­вие с образованием циклических продуктов. Особенно легко вну­тримолекулярная циклизация протекает в тех случаях, когда она приводит к термодинамически устойчивым пяти- и шестичленным циклам.

Например, если альдегидная и гидроксильная группы находят­ся в одной молекуле, то они могут за счет внутримолекулярной ре­акции образовывать циклический полуацеталь. Особенно стабиль­ны пяти- и шестичленные циклические полуацетали. Например, δ-гидроксивалериановый альдегид существует практически только в циклической полуацетальной форме (реакция (10.2)).

δ-гидроксивалериановый циклическая форма

альдегид δ-гидроксивалерианового альдегида

Образование циклических полуацеталей имеет большое значе­ние в химии углеводов.

Особенно распространены реакции образования циклических ангидридов (реакция (10.3)), эфиров (реакция (10.4)), амидов (ре­акция (10.5)) и других производных.

дикарбоновая кислота циклический ангидрид (10.3)

(n = 1 - 2)

гидроксикислота циклический сложный эфир (10.4)

(n = 1 - 3) (лактон)

аминокислота циклический амид

(n = 1 - 3) (лактам)

Межмолекулярная циклизация. Если функциональные груп­пы в молекуле би- или гетерофункционального соединения нахо­дятся у соседних атомов углерода, то это не благоприятствует реак­циям внутримолекулярного элиминирования или внутримолеку­лярной циклизации (поскольку должно приводить к напряженным и поэтому термодинамически нестабильным трех- или четырехчленным циклам). В таких случаях возможны реакции межмоле­кулярной циклизации. Примером может служить образование лактидов из α-гидроксикислот (реакция (10.6)) и дикетопиперазинов из α-аминокислот (реакция(10.7)).

α-гидрокси- α-гидрокси- лактид (10.6)

кислота кислота

α-аминокислота α-аминокислота дикетопиперазин (10.7)

Лактиды и дикетопиперазины представляют собой соответ­ственно циклические сложные эфиры или амиды; в условиях кислотного или основного катализа они способны к гидроли­зу, ведущему к исходным α-гидрокси- или α-аминокислотам.