Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен по урматам 6-ой семестр.doc
Скачиваний:
49
Добавлен:
26.09.2019
Размер:
2.24 Mб
Скачать
  1. Асимптотика решений уравнения Бесселя, нули функции Бесселя.

Функции Бесселя (любые решения уравнения Бесселя) имеют особенность в нуле. Решение уравнения Бесселя при имеет следующий вид: . Докажем это.

Для этого сделаем замену: , подставим , первые производные ушли, осталось: . Таким образом: , будем искать в виде: . Надо найти две функции: и .

положим , получим . Тогда , подставим в уравнение: , т.о. получили систему: . Получили систему, разрешённую относительно производных, но не нелинейную. Оценим. Проинтегрируем и запишем для первого и второго уравнений:

. При больших значениях , и имеют вид констант.

Получим вид : и : .

Тогда - общая формула для любой цилиндрической функции.

Асимптотики функций Бесселя и Неймана:

  1. Краевая задача на собственные значения: , её решение, ортогональность собственных функций, теорема Фурье-Бесселя б/д.

Рассмотрим краевую задачу на собственные значения. на отрезке , или: , отличается от уравнения Бесселя наличием параметра .

Первое решение: - тождественный ноль, а задача Штурма-Лиувилля – это задача на собственные функции и собственные значения - заключается в нахождении таких значений , при которых существует нетривиальное решение.

Сделаем замену: , ( ) , его общее решение , константы находим из начального условия. Из ограниченности находим, что , из второго условия находим что: - это уравнение для определения . У бесконечно много нулей: и , тогда можно написать, что . Тогда собственные значения - их бесконечно много, и соответственно собственные функции .

Все собственные значения действительны и положительны. Это следует из самосопряженности оператора . Убедимся в его самосопряженности. Напишем формулу Грина

, - т.е. оператор самосопряжённый. Это значит, что все собственные значения действительны и положительны, т.к. и .

Все собственные функции, отвечающие разным собственным значениям ортогональны с весом :

Теорема Фурье-Бесселя (о полноте)

Любая функция , которая на отрезке допускает дифференцирование и удовлетворяет граничным условиям: , разлагается в абсолютно и равномерно сходящийся ряд по функциям Бесселя: . Коэффициенты находятся интегрированием, т.к. это разложение по ортогональному базису. .

В задаче на собственные функции и собственные значения всё будет аналогично, если вместо краевого условие первого рода мы возьмём , тогда - будут корнями уравнения: .

  1. Модифицированное уравнение Бесселя, ограниченность решения , свойства, общее решение, понятие о функции .

Рассмотрим уравнение: , оно отличается знаком перед . Сделаем замену , тогда подставим и получим уравнение: , получили уравнение Бесселя. Его ограниченное решение: - модифицированная функция Бесселя.

В качестве С возьмем , тогда . Он отличается знакопостоянством. Рассмотрим его асимптотику: . Модифицированная функция заведомо не имеет нулей (только на мнимой оси), т.к. все слагаемые положительные. Напишем базис. Первая базисная функция - , вторая базисная функция - - функция Макдональда. - действительна для действительных . Её асимптотика , тогда общее решение можно записать так: . Из линейной независимости и следует, что в точке имеет полюс -го порядка.