Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен по урматам 6-ой семестр.doc
Скачиваний:
52
Добавлен:
26.09.2019
Размер:
2.24 Mб
Скачать
  1. Уравнение Бесселя.

Рассмотрим уравнение вида: - уравнение Бесселя. Это уравнение для цилиндрических функций – его решения – цилиндрические функции. Рассмотрим лапласиан в цилиндрических координатах, и : - возникает в связи с решением уравнения Лапласа в цилиндрических координатах.

Решением этого уравнения (1-ым базисным решнием) является функция Бесселя первого рада: .

Рассмотрим некоторые её свойства.

  1. Рекуррентные соотношения.

  2. Функции Бесселя с полуцелыми номерами . Вычислим .

Для этого выполним преобразования:

, подставим , но , тогда .

Таким образом, мы получили следующие значения: , используя рекуррентные соотношения можно получить остальные значения полуцелых индексов.

  1. Нули функции Бесселя.

1. Они есть и их бесконечно много, следует из асимптотики: .

2. Все нули, кроме , простые, изолированные.

3. Все нули действительные, положительные.

4. и не имеют общих нулей (см. рисунок).

5. При возрастании корень смещается, , - корни функции Бесселя.

  1. Особенность, построение ограниченного решения .

Будем искать решение уравнения Бесселя в виде ряда Тейлора, умноженного на : . Подставим это решение в уравнение , , найдём коэффициенты и выберем ограниченное решение.

Подставив решение в уравнение, сравниваем коэффициенты при разных степенях:

При :

При :

При :

При :

Пусть . Таким образом : . Вычислим коэффициент , и выразим его через .

, коэффициент выбираем произвольно: , где .

Таким образом, получили коэффициенты ряда: , т.к. .

Запишем формальный ряд: , если , тогда решение ограничено. Оно решение, т.к. ряд сходится для любых по признаку Даламбера: , сходится при всех , радиус сходимости равен бесконечности. Таким образом, мы получили единственное, с точность до множителя решение: - функция Бесселя первого рода – это первое базисное решение.

Случай рассмотрен в следующем пункте.

  1. Общее решение, , , , понятие о функциях .

Будем искать решение уравнения Бесселя в виде ряда Тейлора, умноженного на : . Подставим это решение в уравнение , , найдём коэффициенты и выберем ограниченное решение.

Подставив решение в уравнение, сравниваем коэффициенты при разных степенях:

При :

При :

При :

При :

Пусть : тогда уравнение решение Бесселя будет: , где - любое нецелое число. Это неограниченное решение значит, оно может выступать в роли второго базисного, но только в случае не целого значения .

Пусть - целое число, тогда при . сменим индекс: , получили соотношение: , то есть решения стали линейно зависимыми..

В качестве второго линейно независимого решения уравнения Бесселя можно взять функцию, построенную следующим образом: - это функция Неймана.

Её асимптотика . Оно тоже может играть роль базисного уравнения.

Могут быть и другие линейно-независимые комбинации (базисные решения):

- функции Ханкеля, их асимптотика .

Т.о. общее решение уравнения Бесселя имеет вид (линейная комбинация 2-х базисных решений):