Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы кв_ мех.doc
Скачиваний:
180
Добавлен:
01.05.2015
Размер:
3.04 Mб
Скачать

I. Предпосылки создания квантовой механики

§1. Классическая электронная теория

Литература: [4], [3], [1], [2].

Квантовая механика возникла не в результате свободного полета фантазии, ее создание было подготовлено всем предшествующим развитием физики. Вершиной этого развития явилась классическая электронная теория, созданная Г. Лоренцем (1853 – 1828). Эта теория основывалась на законах И. Ньютона (1643 – 1727) и Д. Максвелла (1831 – 1879). К 1900 г большинству ученых казалось, что физика в основном завершена, остались лишь отдельные пока не понятые факты и явления, которые должны найти объяснение в рамках существующей теории. Однако накапливались наблюдения, противоречащие великолепной электронной теории Лоренца. Попытки найти объяснение этим наблюдениям и привели к созданию квантовой механики, теории, которая качественно отлична от теории Лоренца, но дает совпадающие с ней результаты в тех случаях, когда эти результаты согласуются с опытом.

Зарождение качественно новых идей и представлений о мире в процессе анализа противоречий между предсказаниями существующей теорией и экспериментом является весьма поучительным. Для преподавателей физики важно не только знать основные идеи квантовой механики, но и понимать их происхождение. Назовем основные положения классической электронной теории, укажем ее достижения, а также трудности в объяснении отдельных явлений.

В электронной теории Лоренца рассматривается совокупность заряженных материальных точек, находящихся в вакууме. Порождаемое ими электромагнитное поле описывается уравнениями Максвелла. Движение частиц подчиняется законам Ньютона. Получается система уравнений, следствиями которой являются наблюдаемые движения заряженных частиц и порождаемые ими электромагнитные поля.

Из электронной теории, в частности, следует, что свет характеризуется объемной плотностью энергии u и объемной плотностью импульса , которые связанны соотношениемu = с p. (1.1)

Свет может передавать свой импульс частицам тел, оказывая на них давление. Это предсказание теории Лоренца было подтверждено опытами П. Н. Лебедева (1866 – 1912).

Излучение света атомами трактуется в электронной теории как излучение переменного электрического диполя. В планетарной модели атома такой диполь образуют ядро и вращающийся вокруг него электрон. Частота колебания диполя, равная частоте вращения электрона, должна быть равна частоте излучаемого диполем света. Быстроту вращения электрона можно изменить, подействовав на него постоянным магнитным полем. Анализ влияния магнитного поля на вращение электрона в атоме позволил Лоренцу в 1897 г. объяснить нормальный (простой) эффект Зеемана. Этот эффект был открыт годом раньше С. Зееманом (1865 – 1943). Эффект заключается в расщеплении спектральных линий светящегося газа при помещении его в постоянное магнитное поле.

Следуя Лоренцу, покажем, что при наблюдении в направлении, перпендикулярном приложенному магнитному полю , вместо излучения одной частоты0 должны наблюдаться излучения трех частот:

 = 0 , где  = . (1.2)

Частота 0 определяется вторым законом Ньютона для электрона, вращающегося по круговой орбите радиуса r вокруг ядра атома:

m r 02 = , (1.3)

e и m – заряд и масса электрона.

Включение магнитного поля , перпендикулярного плоскости орбиты,должно по закону электромагнитной индукции ускорить или замедлить движение электрона в зависимости от направления вращения. Новая частота  будет определяться условием:

m r 2 =  e  r B. (1.4)

Второе слагаемое представляет собой силу Лоренца, действующую на электрон со стороны магнитного поля. Из (1.3) и (1.4) следует (1.2), если учесть, что <<0.

В светящемся газе атомы имеют всевозможную ориентацию. Поэтому в перпендикулярном к полю направлении будут наблюдаться не только излучения частот (1.2), но и излучение частоты0. Это излучение обусловлено электронными орбитами, в плоскости которых лежит вектор . Включение магнитного поля не меняет магнитный поток через такие орбиты, он остается равным нулю. В результате в направлении, перпендикулярном полю, будут фиксироваться три частоты (триплет). Детальное рассмотрение [2] позволяет заключить, что при наблюдении вдоль магнитного поля должно регистрироваться излучение только двух частот (1.2) (дублет). Теория объясняет также характер поляризации излучений.

Заключения Лоренца относительно влияния магнитного поля на излучение атомов согласуются с наблюдениями Зеемана. Это рассматривалось как блестящее достижение классической теории. Однако последующие исследования выявили факты, которые не может объяснить теория Лоренца. В некоторых случаях наблюдалось расщепление не на Лоренцев триплет или дуплет, а на большее число линий. Такая картина получила название аномального (сложного) эффекта Зеемана. Аномальный эффект Зеемана не может быть объяснен классической теорией.

Помимо неспособности классической теории разобраться с аномальным эффектом Зеемана она обладает еще одним более существенным изъяном. Ее представление о движении электронов по окружностям противоречит закону сохранения энергии. Излучение, обусловленное движущимся по орбите электроном, уменьшает энергию атома, вследствие чего электрон должен упасть на ядро. Это должно произойти за время  10–7 с. Об этом существенном недостатке теории Лоренц писал в1924 г.: «Сегодня, излагая электромагнитную теорию, я утверждаю, что движущийся по орбите электрон излучает энергию, а завтра я в той же аудитории говорю, что электрон, вращаясь по орбите вокруг ядра, не теряет энергии. Где же истина? Способны ли мы вообще узнать ее, и имеет ли смысл заниматься наукой? Я потерял уверенность, что моя научная работа вела к объективной истине. Жалею только, что я не умер несколько лет тому назад, когда мне еще все представлялось ясным».

? Контрольные вопросы

  1. Что такое квантовая механика в узком смысле слова?

  2. Что такое квантовая механика в широком смысле слова?

  3. Чем было обусловлено создание квантовой механики?

  4. На каких положениях базируется электронная теория Лоренца?

  5. Назовите явления, которые объясняются электронной теорией Лоренца.

  6. Чем обусловлено расщепление спектральных линий светящегося газа при помещении его в магнитное поле?

  7. В чем заключается аномальный эффект Зеемана?

  8. Расскажите о проблеме устойчивости атомов с точки зрения классической теории.

Задания

Д.1. Давление света.

Плотность энергии и плотность импульса электромагнитных волн. Почему свет оказывает давление на тела? Как давление света зависит от плотности энергии излучения и коэффициента отражения поверхности? Опыты Лебедева.

1.1. Рубиновый лазер излучает в импульсе длительностью  = 0,1 мс энергию E = 10 Дж в виде узкого параллельного монохроматического пучка света. Найти среднее за время импульса давление такого пучка pср, если его сфокусировать в пятнышко диаметром d = 10 мк на поверхность, перпендикулярную пучку, с коэффициентом отражения r = 0,5.

pср = (1 +r) = 65 атм.

1.2. Наблюдается одна из спектральных линий источника, находящегося в магнитном поле B = 1 Тл. Определить ее длину волны , если интервал между компонентами этой линии  = 0.035 нм.

 = = 0, 613 нм

1.3. Энергия I, излучаемая в единицу времени диполем , равна:I = . Полагая начальный радиус электронной орбиты равнымr0 = 0,5 10–10 м, оцените время жизни t атома водорода.

t = 4 (  m)2 (c r0)3/ e4 = 10–11 с.